Update EMT.py
Browse files
EMT.py
CHANGED
@@ -1,165 +1,3 @@
|
|
1 |
-
# import os
|
2 |
-
# import datasets
|
3 |
-
# import tarfile
|
4 |
-
|
5 |
-
# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
6 |
-
# _LICENSE = "CC-BY-SA 4.0"
|
7 |
-
# _CITATION = """
|
8 |
-
# @article{EMTdataset2025,
|
9 |
-
# title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
10 |
-
# author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
11 |
-
# year={2025},
|
12 |
-
# eprint={2502.19260},
|
13 |
-
# archivePrefix={arXiv},
|
14 |
-
# primaryClass={cs.CV},
|
15 |
-
# url={https://arxiv.org/abs/2502.19260}
|
16 |
-
# }
|
17 |
-
# """
|
18 |
-
|
19 |
-
# _DESCRIPTION = """\
|
20 |
-
# A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
21 |
-
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
|
22 |
-
# """
|
23 |
-
|
24 |
-
# # # Annotation repository
|
25 |
-
# # _ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"
|
26 |
-
|
27 |
-
# # Tar file URLs for images
|
28 |
-
# _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
29 |
-
# _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
30 |
-
|
31 |
-
# # Tar file URLs for annotations
|
32 |
-
# _TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
|
33 |
-
# _TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
|
34 |
-
|
35 |
-
|
36 |
-
# class EMT(datasets.GeneratorBasedBuilder):
|
37 |
-
# """EMT dataset."""
|
38 |
-
|
39 |
-
# BUILDER_CONFIGS = [
|
40 |
-
# datasets.BuilderConfig(
|
41 |
-
# name="full_size",
|
42 |
-
# description="All images are in their original size.",
|
43 |
-
# version=datasets.Version("1.0.0"),
|
44 |
-
# )
|
45 |
-
# ]
|
46 |
-
|
47 |
-
# def _info(self):
|
48 |
-
# return datasets.DatasetInfo(
|
49 |
-
# description=_DESCRIPTION,
|
50 |
-
# features=datasets.Features(
|
51 |
-
# {
|
52 |
-
# "image": datasets.Image(),
|
53 |
-
# "objects": datasets.Sequence(
|
54 |
-
# {
|
55 |
-
# "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
56 |
-
# "class_id": datasets.Value("int32"),
|
57 |
-
# "track_id": datasets.Value("int32"),
|
58 |
-
# "class_name": datasets.Value("string"),
|
59 |
-
# }
|
60 |
-
# ),
|
61 |
-
# }
|
62 |
-
# ),
|
63 |
-
# supervised_keys=None,
|
64 |
-
# homepage=_HOMEPAGE,
|
65 |
-
# license=_LICENSE,
|
66 |
-
# citation=_CITATION,
|
67 |
-
# )
|
68 |
-
|
69 |
-
# def _split_generators(self, dl_manager):
|
70 |
-
# """Download train/test images and annotations."""
|
71 |
-
# image_urls = {
|
72 |
-
# "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
73 |
-
# "test": _TEST_IMAGE_ARCHIVE_URL,
|
74 |
-
# }
|
75 |
-
|
76 |
-
# # Download the tar file for annotations
|
77 |
-
# # annotation_urls = {
|
78 |
-
# # "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
79 |
-
# # "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
80 |
-
# # }
|
81 |
-
# annotation_urls = {
|
82 |
-
# "train": "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz",
|
83 |
-
# "test": "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz",
|
84 |
-
# }
|
85 |
-
# # Download image files
|
86 |
-
# images = {
|
87 |
-
# "train": dl_manager.iter_archive(image_urls["train"]),
|
88 |
-
# "test": dl_manager.iter_archive(image_urls["test"]),
|
89 |
-
# }
|
90 |
-
|
91 |
-
# # Download annotation files and extract them
|
92 |
-
# annotations = {
|
93 |
-
# "train": dl_manager.download_and_extract(annotation_urls["train"]),
|
94 |
-
# "test": dl_manager.download_and_extract(annotation_urls["test"]),
|
95 |
-
# }
|
96 |
-
|
97 |
-
# return [
|
98 |
-
# datasets.SplitGenerator(
|
99 |
-
# name=datasets.Split.TRAIN,
|
100 |
-
# gen_kwargs={
|
101 |
-
# "images": images["train"],
|
102 |
-
# "annotation_path": annotations["train"],
|
103 |
-
# },
|
104 |
-
# ),
|
105 |
-
# datasets.SplitGenerator(
|
106 |
-
# name=datasets.Split.TEST,
|
107 |
-
# gen_kwargs={
|
108 |
-
# "images": images["test"],
|
109 |
-
# "annotation_path": annotations["test"],
|
110 |
-
# },
|
111 |
-
# ),
|
112 |
-
# ]
|
113 |
-
|
114 |
-
# def _generate_examples(self, images, annotation_path):
|
115 |
-
# """Generate dataset examples by matching images to their corresponding annotations."""
|
116 |
-
|
117 |
-
# annotations = {}
|
118 |
-
|
119 |
-
# # Load all annotations into memory
|
120 |
-
# for ann_file in os.listdir(annotation_path):
|
121 |
-
# video_name = os.path.splitext(ann_file)[0] # Get video folder name from the annotation file
|
122 |
-
# ann_path = os.path.join(annotation_path, ann_file)
|
123 |
-
# print("ann_path:,",ann_path,"\nannotation_path: ",annotation_path)
|
124 |
-
|
125 |
-
# with open(ann_path, "r", encoding="utf-8") as f:
|
126 |
-
# for line in f:
|
127 |
-
# parts = line.strip().split()
|
128 |
-
# if len(parts) < 8:
|
129 |
-
# continue
|
130 |
-
|
131 |
-
# frame_id, track_id, class_name = parts[:3]
|
132 |
-
# bbox = list(map(float, parts[4:8]))
|
133 |
-
# class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
134 |
-
# img_name = f"{frame_id}.jpg"
|
135 |
-
|
136 |
-
# # Store annotation in a dictionary
|
137 |
-
# key = f"{video_name}/{img_name}"
|
138 |
-
# if key not in annotations:
|
139 |
-
# annotations[key] = []
|
140 |
-
|
141 |
-
# annotations[key].append(
|
142 |
-
# {
|
143 |
-
# "bbox": bbox,
|
144 |
-
# "class_id": class_id,
|
145 |
-
# "track_id": int(track_id),
|
146 |
-
# "class_name": class_name,
|
147 |
-
# }
|
148 |
-
# )
|
149 |
-
|
150 |
-
# # Yield dataset entries
|
151 |
-
# idx = 0
|
152 |
-
# for file_path, file_obj in images:
|
153 |
-
# img_name = os.path.basename(file_path)
|
154 |
-
# video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
|
155 |
-
# key = f"{video_name}/{img_name}"
|
156 |
-
|
157 |
-
# if key in annotations:
|
158 |
-
# yield idx, {
|
159 |
-
# "image": {"path": file_path, "bytes": file_obj.read()},
|
160 |
-
# "objects": annotations[key],
|
161 |
-
# }
|
162 |
-
# idx += 1
|
163 |
|
164 |
import os
|
165 |
import datasets
|
@@ -275,7 +113,7 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
275 |
else:
|
276 |
raise ValueError(f"Unknown annotation path: {annotation_path}")
|
277 |
|
278 |
-
ann_dir =
|
279 |
|
280 |
print(f"Extracted annotations path: {annotation_path}")
|
281 |
print(f"Looking for annotations in: {ann_dir}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import os
|
3 |
import datasets
|
|
|
113 |
else:
|
114 |
raise ValueError(f"Unknown annotation path: {annotation_path}")
|
115 |
|
116 |
+
ann_dir = annotation_path
|
117 |
|
118 |
print(f"Extracted annotations path: {annotation_path}")
|
119 |
print(f"Looking for annotations in: {ann_dir}")
|