Update EMT.py
Browse files
EMT.py
CHANGED
@@ -1,212 +1,4 @@
|
|
1 |
|
2 |
-
# import os
|
3 |
-
# import datasets
|
4 |
-
# import tarfile
|
5 |
-
|
6 |
-
# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
7 |
-
# _LICENSE = "CC-BY-SA 4.0"
|
8 |
-
# _CITATION = """
|
9 |
-
# @article{EMTdataset2025,
|
10 |
-
# title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
11 |
-
# author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
12 |
-
# year={2025},
|
13 |
-
# eprint={2502.19260},
|
14 |
-
# archivePrefix={arXiv},
|
15 |
-
# primaryClass={cs.CV},
|
16 |
-
# url={https://arxiv.org/abs/2502.19260}
|
17 |
-
# }
|
18 |
-
# """
|
19 |
-
|
20 |
-
# _DESCRIPTION = """\
|
21 |
-
# A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
22 |
-
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
|
23 |
-
# """
|
24 |
-
|
25 |
-
# _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
26 |
-
# _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
27 |
-
|
28 |
-
# _TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
|
29 |
-
# _TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
|
30 |
-
|
31 |
-
|
32 |
-
# class EMT(datasets.GeneratorBasedBuilder):
|
33 |
-
# """EMT dataset."""
|
34 |
-
|
35 |
-
# BUILDER_CONFIGS = [
|
36 |
-
# datasets.BuilderConfig(
|
37 |
-
# name="full_size",
|
38 |
-
# description="All images are in their original size.",
|
39 |
-
# version=datasets.Version("1.0.0"),
|
40 |
-
# )
|
41 |
-
# ]
|
42 |
-
|
43 |
-
# def _info(self):
|
44 |
-
# return datasets.DatasetInfo(
|
45 |
-
# description=_DESCRIPTION,
|
46 |
-
# features=datasets.Features(
|
47 |
-
# {
|
48 |
-
# "image": datasets.Image(),
|
49 |
-
# "objects": datasets.Sequence(
|
50 |
-
# {
|
51 |
-
# "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
52 |
-
# "class_id": datasets.Value("int32"),
|
53 |
-
# "track_id": datasets.Value("int32"),
|
54 |
-
# "class_name": datasets.Value("string"),
|
55 |
-
# }
|
56 |
-
# ),
|
57 |
-
# }
|
58 |
-
# ),
|
59 |
-
# supervised_keys=None,
|
60 |
-
# homepage=_HOMEPAGE,
|
61 |
-
# license=_LICENSE,
|
62 |
-
# citation=_CITATION,
|
63 |
-
# )
|
64 |
-
|
65 |
-
# def _split_generators(self, dl_manager):
|
66 |
-
# """Download (if not cached) and prepare dataset splits."""
|
67 |
-
|
68 |
-
# image_urls = {
|
69 |
-
# "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
70 |
-
# "test": _TEST_IMAGE_ARCHIVE_URL,
|
71 |
-
# }
|
72 |
-
|
73 |
-
# annotation_urls = {
|
74 |
-
# "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
75 |
-
# "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
76 |
-
# }
|
77 |
-
|
78 |
-
# # Based on the requested split, we only download the relevant data
|
79 |
-
# split = self.config.name # Determine the requested split (train or test)
|
80 |
-
|
81 |
-
# # Ensure paths are correctly resolved for the requested split
|
82 |
-
# extracted_paths = dl_manager.download_and_extract({split: annotation_urls[split]})
|
83 |
-
# image_archives = dl_manager.download_and_extract({split: image_urls[split]})
|
84 |
-
|
85 |
-
# # Ensure annotation paths point to the correct subdirectory
|
86 |
-
# annotation_path = os.path.join(extracted_paths[split], "annotations", split)
|
87 |
-
# image_path = image_archives[split]
|
88 |
-
|
89 |
-
# return [
|
90 |
-
# datasets.SplitGenerator(
|
91 |
-
# name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
|
92 |
-
# gen_kwargs={
|
93 |
-
# "images": dl_manager.iter_archive(image_path),
|
94 |
-
# "annotation_path": annotation_path,
|
95 |
-
# },
|
96 |
-
# ),
|
97 |
-
# ]
|
98 |
-
|
99 |
-
|
100 |
-
# # def _split_generators(self, dl_manager):
|
101 |
-
# # """Download (if not cached) and prepare dataset splits."""
|
102 |
-
|
103 |
-
# # image_urls = {
|
104 |
-
# # "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
105 |
-
# # "test": _TEST_IMAGE_ARCHIVE_URL,
|
106 |
-
# # }
|
107 |
-
|
108 |
-
# # annotation_urls = {
|
109 |
-
# # "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
110 |
-
# # "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
111 |
-
# # }
|
112 |
-
|
113 |
-
# # # Ensure paths are correctly resolved
|
114 |
-
# # extracted_paths = dl_manager.download_and_extract(annotation_urls)
|
115 |
-
# # image_archives = dl_manager.download_and_extract(image_urls)
|
116 |
-
|
117 |
-
# # # ✅ Ensure annotation paths point to the correct subdirectory
|
118 |
-
# # train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
|
119 |
-
# # test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
|
120 |
-
|
121 |
-
# # return [
|
122 |
-
# # datasets.SplitGenerator(
|
123 |
-
# # name=datasets.Split.TRAIN,
|
124 |
-
# # gen_kwargs={
|
125 |
-
# # "images": dl_manager.iter_archive(image_archives["train"]),
|
126 |
-
# # "annotation_path": train_annotation_path, # ✅ Corrected path
|
127 |
-
# # },
|
128 |
-
# # ),
|
129 |
-
# # datasets.SplitGenerator(
|
130 |
-
# # name=datasets.Split.TEST,
|
131 |
-
# # gen_kwargs={
|
132 |
-
# # "images": dl_manager.iter_archive(image_archives["test"]),
|
133 |
-
# # "annotation_path": test_annotation_path, # ✅ Corrected path
|
134 |
-
# # },
|
135 |
-
# # ),
|
136 |
-
# # ]
|
137 |
-
|
138 |
-
# def _generate_examples(self, images, annotation_path):
|
139 |
-
# """Generate dataset examples by matching images to their corresponding annotations."""
|
140 |
-
|
141 |
-
# annotations = {}
|
142 |
-
|
143 |
-
# # Determine whether we're processing train or test split
|
144 |
-
# if "train" in annotation_path:
|
145 |
-
# annotation_split = "train"
|
146 |
-
# elif "test" in annotation_path:
|
147 |
-
# annotation_split = "test"
|
148 |
-
# else:
|
149 |
-
# raise ValueError(f"Unknown annotation path: {annotation_path}")
|
150 |
-
|
151 |
-
# ann_dir = annotation_path
|
152 |
-
|
153 |
-
# print(f"Extracted annotations path: {annotation_path}")
|
154 |
-
# print(f"Looking for annotations in: {ann_dir}")
|
155 |
-
|
156 |
-
# # Check if annotation directory exists
|
157 |
-
# if not os.path.exists(ann_dir):
|
158 |
-
# raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
|
159 |
-
|
160 |
-
# # Extract annotation files and read their contents
|
161 |
-
# for ann_file in os.listdir(ann_dir):
|
162 |
-
# video_name = os.path.splitext(ann_file)[0] # Extract video folder name from file
|
163 |
-
# ann_path = os.path.join(ann_dir, ann_file)
|
164 |
-
|
165 |
-
# if os.path.isdir(ann_path):
|
166 |
-
# continue # Skip directories
|
167 |
-
|
168 |
-
# print("Processing annotation file:", ann_path)
|
169 |
-
|
170 |
-
# with open(ann_path, "r", encoding="utf-8") as f:
|
171 |
-
# for line in f:
|
172 |
-
# parts = line.strip().split()
|
173 |
-
# if len(parts) < 8:
|
174 |
-
# continue
|
175 |
-
|
176 |
-
# frame_id, track_id, class_name = parts[:3]
|
177 |
-
# bbox = list(map(float, parts[4:8]))
|
178 |
-
# class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
179 |
-
# img_name = f"{frame_id}.jpg"
|
180 |
-
|
181 |
-
# # Store annotation in a dictionary
|
182 |
-
# key = f"{video_name}/{img_name}"
|
183 |
-
# if key not in annotations:
|
184 |
-
# annotations[key] = []
|
185 |
-
|
186 |
-
# annotations[key].append(
|
187 |
-
# {
|
188 |
-
# "bbox": bbox,
|
189 |
-
# "class_id": class_id,
|
190 |
-
# "track_id": int(track_id),
|
191 |
-
# "class_name": class_name,
|
192 |
-
# }
|
193 |
-
# )
|
194 |
-
|
195 |
-
# # Yield dataset entries
|
196 |
-
# idx = 0
|
197 |
-
# for file_path, file_obj in images:
|
198 |
-
# img_name = os.path.basename(file_path)
|
199 |
-
# video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
|
200 |
-
# key = f"{video_name}/{img_name}"
|
201 |
-
|
202 |
-
# if key in annotations:
|
203 |
-
# yield idx, {
|
204 |
-
# "image": {"path": file_path, "bytes": file_obj.read()},
|
205 |
-
# "objects": annotations[key],
|
206 |
-
# }
|
207 |
-
# idx += 1
|
208 |
-
|
209 |
-
|
210 |
import os
|
211 |
import datasets
|
212 |
import tarfile
|
@@ -364,8 +156,7 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
364 |
]
|
365 |
|
366 |
|
367 |
-
|
368 |
-
def _generate_examples(self, images, annotation_path):
|
369 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
370 |
|
371 |
annotations = {}
|
@@ -424,14 +215,90 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
424 |
|
425 |
# Yield dataset entries
|
426 |
idx = 0
|
427 |
-
for
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import datasets
|
4 |
import tarfile
|
|
|
156 |
]
|
157 |
|
158 |
|
159 |
+
def _generate_examples(self, image_dir, annotation_path):
|
|
|
160 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
161 |
|
162 |
annotations = {}
|
|
|
215 |
|
216 |
# Yield dataset entries
|
217 |
idx = 0
|
218 |
+
for root, _, files in os.walk(image_dir):
|
219 |
+
for file_name in files:
|
220 |
+
if not file_name.endswith((".jpg", ".png")):
|
221 |
+
continue
|
222 |
+
|
223 |
+
file_path = os.path.join(root, file_name)
|
224 |
+
video_name = os.path.basename(root) # Match the video folder
|
225 |
+
key = f"{video_name}/{file_name}"
|
226 |
+
|
227 |
+
if key in annotations:
|
228 |
+
with open(file_path, "rb") as img_file:
|
229 |
+
yield idx, {
|
230 |
+
"image": {"path": file_path, "bytes": img_file.read()},
|
231 |
+
"objects": annotations[key],
|
232 |
+
}
|
233 |
+
idx += 1
|
234 |
+
|
235 |
+
# def _generate_examples(self, images, annotation_path):
|
236 |
+
# """Generate dataset examples by matching images to their corresponding annotations."""
|
237 |
|
238 |
+
# annotations = {}
|
239 |
+
|
240 |
+
# # Determine whether we're processing train or test split
|
241 |
+
# if "train" in annotation_path:
|
242 |
+
# annotation_split = "train"
|
243 |
+
# elif "test" in annotation_path:
|
244 |
+
# annotation_split = "test"
|
245 |
+
# else:
|
246 |
+
# raise ValueError(f"Unknown annotation path: {annotation_path}")
|
247 |
+
|
248 |
+
# ann_dir = annotation_path
|
249 |
+
|
250 |
+
# print(f"Extracted annotations path: {annotation_path}")
|
251 |
+
# print(f"Looking for annotations in: {ann_dir}")
|
252 |
+
|
253 |
+
# # Check if annotation directory exists
|
254 |
+
# if not os.path.exists(ann_dir):
|
255 |
+
# raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
|
256 |
+
|
257 |
+
# # Extract annotation files and read their contents
|
258 |
+
# for ann_file in os.listdir(ann_dir):
|
259 |
+
# video_name = os.path.splitext(ann_file)[0] # Extract video folder name from file
|
260 |
+
# ann_path = os.path.join(ann_dir, ann_file)
|
261 |
+
|
262 |
+
# if os.path.isdir(ann_path):
|
263 |
+
# continue # Skip directories
|
264 |
+
|
265 |
+
# print("Processing annotation file:", ann_path)
|
266 |
+
|
267 |
+
# with open(ann_path, "r", encoding="utf-8") as f:
|
268 |
+
# for line in f:
|
269 |
+
# parts = line.strip().split()
|
270 |
+
# if len(parts) < 8:
|
271 |
+
# continue
|
272 |
+
|
273 |
+
# frame_id, track_id, class_name = parts[:3]
|
274 |
+
# bbox = list(map(float, parts[4:8]))
|
275 |
+
# class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
276 |
+
# img_name = f"{frame_id}.jpg"
|
277 |
+
|
278 |
+
# # Store annotation in a dictionary
|
279 |
+
# key = f"{video_name}/{img_name}"
|
280 |
+
# if key not in annotations:
|
281 |
+
# annotations[key] = []
|
282 |
+
|
283 |
+
# annotations[key].append(
|
284 |
+
# {
|
285 |
+
# "bbox": bbox,
|
286 |
+
# "class_id": class_id,
|
287 |
+
# "track_id": int(track_id),
|
288 |
+
# "class_name": class_name,
|
289 |
+
# }
|
290 |
+
# )
|
291 |
+
|
292 |
+
# # Yield dataset entries
|
293 |
+
# idx = 0
|
294 |
+
# for file_path, file_obj in images:
|
295 |
+
# img_name = os.path.basename(file_path)
|
296 |
+
# video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
|
297 |
+
# key = f"{video_name}/{img_name}"
|
298 |
+
|
299 |
+
# if key in annotations:
|
300 |
+
# yield idx, {
|
301 |
+
# "image": {"path": file_path, "bytes": file_obj.read()},
|
302 |
+
# "objects": annotations[key],
|
303 |
+
# }
|
304 |
+
# idx += 1
|