KuAvLab commited on
Commit
63c9e83
·
verified ·
1 Parent(s): cdb0b4e

Update EMT.py

Browse files
Files changed (1) hide show
  1. EMT.py +44 -21
EMT.py CHANGED
@@ -163,14 +163,33 @@
163
 
164
  import os
165
  import datasets
 
166
 
167
- # Annotation repository
168
- _ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
- # Tar file URLs for images
171
  _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
172
  _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
173
 
 
 
 
174
 
175
  class EMT(datasets.GeneratorBasedBuilder):
176
  """EMT dataset."""
@@ -211,24 +230,24 @@ class EMT(datasets.GeneratorBasedBuilder):
211
  "train": _TRAIN_IMAGE_ARCHIVE_URL,
212
  "test": _TEST_IMAGE_ARCHIVE_URL,
213
  }
214
-
 
 
 
 
 
215
  # Download image files
216
  images = {
217
  "train": dl_manager.iter_archive(image_urls["train"]),
218
  "test": dl_manager.iter_archive(image_urls["test"]),
219
  }
220
-
221
- # Download the annotation files from the remote repository
222
- annotation_urls = {
223
- "train": _ANNOTATION_REPO + "/train/",
224
- "test": _ANNOTATION_REPO + "/test/",
225
- }
226
-
227
  annotations = {
228
  "train": dl_manager.download_and_extract(annotation_urls["train"]),
229
  "test": dl_manager.download_and_extract(annotation_urls["test"]),
230
  }
231
-
232
  return [
233
  datasets.SplitGenerator(
234
  name=datasets.Split.TRAIN,
@@ -251,29 +270,32 @@ class EMT(datasets.GeneratorBasedBuilder):
251
 
252
  annotations = {}
253
 
254
- # Load all annotations into memory from the extracted remote tar file
255
  for ann_file in os.listdir(annotation_path):
256
- # Get video folder name (e.g., video_12211.txt)
257
- video_name = os.path.splitext(ann_file)[0]
258
  ann_path = os.path.join(annotation_path, ann_file)
259
 
260
- # Open the annotation file for reading
 
 
 
 
261
  with open(ann_path, "r", encoding="utf-8") as f:
262
  for line in f:
263
  parts = line.strip().split()
264
  if len(parts) < 8:
265
  continue
266
-
267
  frame_id, track_id, class_name = parts[:3]
268
  bbox = list(map(float, parts[4:8]))
269
  class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
270
  img_name = f"{frame_id}.jpg"
271
-
272
  # Store annotation in a dictionary
273
- key = f"{video_name}/{img_name}"
274
  if key not in annotations:
275
  annotations[key] = []
276
-
277
  annotations[key].append(
278
  {
279
  "bbox": bbox,
@@ -289,10 +311,11 @@ class EMT(datasets.GeneratorBasedBuilder):
289
  img_name = os.path.basename(file_path)
290
  video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
291
  key = f"{video_name}/{img_name}"
292
-
293
  if key in annotations:
294
  yield idx, {
295
  "image": {"path": file_path, "bytes": file_obj.read()},
296
  "objects": annotations[key],
297
  }
298
  idx += 1
 
 
163
 
164
  import os
165
  import datasets
166
+ import tarfile
167
 
168
+ _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
169
+ _LICENSE = "CC-BY-SA 4.0"
170
+ _CITATION = """
171
+ @article{EMTdataset2025,
172
+ title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
173
+ author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
174
+ year={2025},
175
+ eprint={2502.19260},
176
+ archivePrefix={arXiv},
177
+ primaryClass={cs.CV},
178
+ url={https://arxiv.org/abs/2502.19260}
179
+ }
180
+ """
181
+
182
+ _DESCRIPTION = """\
183
+ A multi-task dataset for detection, tracking, prediction, and intention prediction.
184
+ This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
185
+ """
186
 
 
187
  _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
188
  _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
189
 
190
+ _TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
191
+ _TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
192
+
193
 
194
  class EMT(datasets.GeneratorBasedBuilder):
195
  """EMT dataset."""
 
230
  "train": _TRAIN_IMAGE_ARCHIVE_URL,
231
  "test": _TEST_IMAGE_ARCHIVE_URL,
232
  }
233
+
234
+ annotation_urls = {
235
+ "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
236
+ "test": _TEST_ANNOTATION_ARCHIVE_URL,
237
+ }
238
+
239
  # Download image files
240
  images = {
241
  "train": dl_manager.iter_archive(image_urls["train"]),
242
  "test": dl_manager.iter_archive(image_urls["test"]),
243
  }
244
+
245
+ # Download annotation files and extract them
 
 
 
 
 
246
  annotations = {
247
  "train": dl_manager.download_and_extract(annotation_urls["train"]),
248
  "test": dl_manager.download_and_extract(annotation_urls["test"]),
249
  }
250
+
251
  return [
252
  datasets.SplitGenerator(
253
  name=datasets.Split.TRAIN,
 
270
 
271
  annotations = {}
272
 
273
+ # Extract annotation tar file and read its contents
274
  for ann_file in os.listdir(annotation_path):
275
+ # Ensure that we're dealing with the annotation file
 
276
  ann_path = os.path.join(annotation_path, ann_file)
277
 
278
+ if os.path.isdir(ann_path):
279
+ continue # Skip directories
280
+
281
+ print("Processing annotation file:", ann_path)
282
+
283
  with open(ann_path, "r", encoding="utf-8") as f:
284
  for line in f:
285
  parts = line.strip().split()
286
  if len(parts) < 8:
287
  continue
288
+
289
  frame_id, track_id, class_name = parts[:3]
290
  bbox = list(map(float, parts[4:8]))
291
  class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
292
  img_name = f"{frame_id}.jpg"
293
+
294
  # Store annotation in a dictionary
295
+ key = f"{ann_file}/{img_name}"
296
  if key not in annotations:
297
  annotations[key] = []
298
+
299
  annotations[key].append(
300
  {
301
  "bbox": bbox,
 
311
  img_name = os.path.basename(file_path)
312
  video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
313
  key = f"{video_name}/{img_name}"
314
+
315
  if key in annotations:
316
  yield idx, {
317
  "image": {"path": file_path, "bytes": file_obj.read()},
318
  "objects": annotations[key],
319
  }
320
  idx += 1
321
+