Update EMT.py
Browse files
EMT.py
CHANGED
@@ -163,14 +163,33 @@
|
|
163 |
|
164 |
import os
|
165 |
import datasets
|
|
|
166 |
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
# Tar file URLs for images
|
171 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
172 |
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
173 |
|
|
|
|
|
|
|
174 |
|
175 |
class EMT(datasets.GeneratorBasedBuilder):
|
176 |
"""EMT dataset."""
|
@@ -211,24 +230,24 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
211 |
"train": _TRAIN_IMAGE_ARCHIVE_URL,
|
212 |
"test": _TEST_IMAGE_ARCHIVE_URL,
|
213 |
}
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
215 |
# Download image files
|
216 |
images = {
|
217 |
"train": dl_manager.iter_archive(image_urls["train"]),
|
218 |
"test": dl_manager.iter_archive(image_urls["test"]),
|
219 |
}
|
220 |
-
|
221 |
-
# Download
|
222 |
-
annotation_urls = {
|
223 |
-
"train": _ANNOTATION_REPO + "/train/",
|
224 |
-
"test": _ANNOTATION_REPO + "/test/",
|
225 |
-
}
|
226 |
-
|
227 |
annotations = {
|
228 |
"train": dl_manager.download_and_extract(annotation_urls["train"]),
|
229 |
"test": dl_manager.download_and_extract(annotation_urls["test"]),
|
230 |
}
|
231 |
-
|
232 |
return [
|
233 |
datasets.SplitGenerator(
|
234 |
name=datasets.Split.TRAIN,
|
@@ -251,29 +270,32 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
251 |
|
252 |
annotations = {}
|
253 |
|
254 |
-
#
|
255 |
for ann_file in os.listdir(annotation_path):
|
256 |
-
#
|
257 |
-
video_name = os.path.splitext(ann_file)[0]
|
258 |
ann_path = os.path.join(annotation_path, ann_file)
|
259 |
|
260 |
-
|
|
|
|
|
|
|
|
|
261 |
with open(ann_path, "r", encoding="utf-8") as f:
|
262 |
for line in f:
|
263 |
parts = line.strip().split()
|
264 |
if len(parts) < 8:
|
265 |
continue
|
266 |
-
|
267 |
frame_id, track_id, class_name = parts[:3]
|
268 |
bbox = list(map(float, parts[4:8]))
|
269 |
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
270 |
img_name = f"{frame_id}.jpg"
|
271 |
-
|
272 |
# Store annotation in a dictionary
|
273 |
-
key = f"{
|
274 |
if key not in annotations:
|
275 |
annotations[key] = []
|
276 |
-
|
277 |
annotations[key].append(
|
278 |
{
|
279 |
"bbox": bbox,
|
@@ -289,10 +311,11 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
289 |
img_name = os.path.basename(file_path)
|
290 |
video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
|
291 |
key = f"{video_name}/{img_name}"
|
292 |
-
|
293 |
if key in annotations:
|
294 |
yield idx, {
|
295 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
296 |
"objects": annotations[key],
|
297 |
}
|
298 |
idx += 1
|
|
|
|
163 |
|
164 |
import os
|
165 |
import datasets
|
166 |
+
import tarfile
|
167 |
|
168 |
+
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
169 |
+
_LICENSE = "CC-BY-SA 4.0"
|
170 |
+
_CITATION = """
|
171 |
+
@article{EMTdataset2025,
|
172 |
+
title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
173 |
+
author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
174 |
+
year={2025},
|
175 |
+
eprint={2502.19260},
|
176 |
+
archivePrefix={arXiv},
|
177 |
+
primaryClass={cs.CV},
|
178 |
+
url={https://arxiv.org/abs/2502.19260}
|
179 |
+
}
|
180 |
+
"""
|
181 |
+
|
182 |
+
_DESCRIPTION = """\
|
183 |
+
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
184 |
+
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
|
185 |
+
"""
|
186 |
|
|
|
187 |
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
188 |
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
189 |
|
190 |
+
_TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
|
191 |
+
_TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
|
192 |
+
|
193 |
|
194 |
class EMT(datasets.GeneratorBasedBuilder):
|
195 |
"""EMT dataset."""
|
|
|
230 |
"train": _TRAIN_IMAGE_ARCHIVE_URL,
|
231 |
"test": _TEST_IMAGE_ARCHIVE_URL,
|
232 |
}
|
233 |
+
|
234 |
+
annotation_urls = {
|
235 |
+
"train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
236 |
+
"test": _TEST_ANNOTATION_ARCHIVE_URL,
|
237 |
+
}
|
238 |
+
|
239 |
# Download image files
|
240 |
images = {
|
241 |
"train": dl_manager.iter_archive(image_urls["train"]),
|
242 |
"test": dl_manager.iter_archive(image_urls["test"]),
|
243 |
}
|
244 |
+
|
245 |
+
# Download annotation files and extract them
|
|
|
|
|
|
|
|
|
|
|
246 |
annotations = {
|
247 |
"train": dl_manager.download_and_extract(annotation_urls["train"]),
|
248 |
"test": dl_manager.download_and_extract(annotation_urls["test"]),
|
249 |
}
|
250 |
+
|
251 |
return [
|
252 |
datasets.SplitGenerator(
|
253 |
name=datasets.Split.TRAIN,
|
|
|
270 |
|
271 |
annotations = {}
|
272 |
|
273 |
+
# Extract annotation tar file and read its contents
|
274 |
for ann_file in os.listdir(annotation_path):
|
275 |
+
# Ensure that we're dealing with the annotation file
|
|
|
276 |
ann_path = os.path.join(annotation_path, ann_file)
|
277 |
|
278 |
+
if os.path.isdir(ann_path):
|
279 |
+
continue # Skip directories
|
280 |
+
|
281 |
+
print("Processing annotation file:", ann_path)
|
282 |
+
|
283 |
with open(ann_path, "r", encoding="utf-8") as f:
|
284 |
for line in f:
|
285 |
parts = line.strip().split()
|
286 |
if len(parts) < 8:
|
287 |
continue
|
288 |
+
|
289 |
frame_id, track_id, class_name = parts[:3]
|
290 |
bbox = list(map(float, parts[4:8]))
|
291 |
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
292 |
img_name = f"{frame_id}.jpg"
|
293 |
+
|
294 |
# Store annotation in a dictionary
|
295 |
+
key = f"{ann_file}/{img_name}"
|
296 |
if key not in annotations:
|
297 |
annotations[key] = []
|
298 |
+
|
299 |
annotations[key].append(
|
300 |
{
|
301 |
"bbox": bbox,
|
|
|
311 |
img_name = os.path.basename(file_path)
|
312 |
video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
|
313 |
key = f"{video_name}/{img_name}"
|
314 |
+
|
315 |
if key in annotations:
|
316 |
yield idx, {
|
317 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
318 |
"objects": annotations[key],
|
319 |
}
|
320 |
idx += 1
|
321 |
+
|