Murad Mebrahtu
commited on
Commit
·
2f6e05a
1
Parent(s):
73e3647
updated
Browse files
emt.py
CHANGED
@@ -1,144 +1,6 @@
|
|
1 |
-
# """EMT dataset."""
|
2 |
-
|
3 |
-
# import os
|
4 |
-
# import json
|
5 |
-
|
6 |
-
# import datasets
|
7 |
-
|
8 |
-
|
9 |
-
# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
10 |
-
|
11 |
-
# _LICENSE = "CC-BY-SA 4.0"
|
12 |
-
|
13 |
-
# _CITATION = """
|
14 |
-
# @article{EMTdataset2025,
|
15 |
-
# title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
16 |
-
# author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
17 |
-
# year={2025},
|
18 |
-
# eprint={2502.19260},
|
19 |
-
# archivePrefix={arXiv},
|
20 |
-
# primaryClass={cs.CV},
|
21 |
-
# url={https://arxiv.org/abs/2502.19260}
|
22 |
-
# }
|
23 |
-
# """
|
24 |
-
|
25 |
-
# _DESCRIPTION = """\
|
26 |
-
# A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
27 |
-
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.",
|
28 |
-
|
29 |
-
# """
|
30 |
-
|
31 |
-
|
32 |
-
# _LABEL_MAP = [
|
33 |
-
# 'n01440764',
|
34 |
-
# 'n02102040',
|
35 |
-
# 'n02979186',
|
36 |
-
# 'n03000684',
|
37 |
-
# 'n03028079',
|
38 |
-
# 'n03394916',
|
39 |
-
# 'n03417042',
|
40 |
-
# 'n03425413',
|
41 |
-
# 'n03445777',
|
42 |
-
# 'n03888257',
|
43 |
-
# ]
|
44 |
-
|
45 |
-
# # _REPO = "https://huggingface.co/datasets/frgfm/imagenette/resolve/main/metadata"
|
46 |
-
# _REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/labels"
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
# class EMTConfig(datasets.BuilderConfig):
|
51 |
-
# """BuilderConfig for EMT."""
|
52 |
-
|
53 |
-
# def __init__(self, data_url, metadata_urls, **kwargs):
|
54 |
-
# """BuilderConfig for EMT.
|
55 |
-
# Args:
|
56 |
-
# data_url: `string`, url to download the zip file from.
|
57 |
-
# matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
|
58 |
-
# **kwargs: keyword arguments forwarded to super.
|
59 |
-
# """
|
60 |
-
# super(EMTConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
61 |
-
# self.data_url = data_url
|
62 |
-
# self.metadata_urls = metadata_urls
|
63 |
-
|
64 |
-
|
65 |
-
# class EMT(datasets.GeneratorBasedBuilder):
|
66 |
-
# """Imagenette dataset."""
|
67 |
-
|
68 |
-
# BUILDER_CONFIGS = [
|
69 |
-
# EMTConfig(
|
70 |
-
# name="full_size",
|
71 |
-
# description="All images are in their original size.",
|
72 |
-
# data_url="https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz",
|
73 |
-
# metadata_urls={
|
74 |
-
# "train": f"{_REPO}/train/",
|
75 |
-
# "test": f"{_REPO}/test/",
|
76 |
-
# },
|
77 |
-
# )
|
78 |
-
# ]
|
79 |
-
|
80 |
-
# def _info(self):
|
81 |
-
# return datasets.DatasetInfo(
|
82 |
-
# description=_DESCRIPTION + self.config.description,
|
83 |
-
# features=datasets.Features(
|
84 |
-
# {
|
85 |
-
# "image": datasets.Image(),
|
86 |
-
# "label": datasets.ClassLabel(
|
87 |
-
# names=[
|
88 |
-
# "bbox",
|
89 |
-
# "class_id",
|
90 |
-
# "track_id",
|
91 |
-
# "class_name",
|
92 |
-
|
93 |
-
# ]
|
94 |
-
# ),
|
95 |
-
# }
|
96 |
-
# ),
|
97 |
-
# supervised_keys=None,
|
98 |
-
# homepage=_HOMEPAGE,
|
99 |
-
# license=_LICENSE,
|
100 |
-
# citation=_CITATION,
|
101 |
-
# )
|
102 |
-
|
103 |
-
# def _split_generators(self, dl_manager):
|
104 |
-
# archive_path = dl_manager.download(self.config.data_url)
|
105 |
-
# metadata_paths = dl_manager.download(self.config.metadata_urls)
|
106 |
-
# archive_iter = dl_manager.iter_archive(archive_path)
|
107 |
-
# return [
|
108 |
-
# datasets.SplitGenerator(
|
109 |
-
# name=datasets.Split.TRAIN,
|
110 |
-
# gen_kwargs={
|
111 |
-
# "images": archive_iter,
|
112 |
-
# "metadata_path": metadata_paths["train"],
|
113 |
-
# },
|
114 |
-
# ),
|
115 |
-
# datasets.SplitGenerator(
|
116 |
-
# name=datasets.Split.TEST,
|
117 |
-
# gen_kwargs={
|
118 |
-
# "images": os.path.join(self.config.data_url, "test"),
|
119 |
-
# "metadata_path": metadata_paths["test"],
|
120 |
-
# },
|
121 |
-
# ),
|
122 |
-
# ]
|
123 |
-
|
124 |
-
# def _generate_examples(self, images, metadata_path):
|
125 |
-
# with open(metadata_path, encoding="utf-8") as f:
|
126 |
-
# files_to_keep = set(f.read().split("\n"))
|
127 |
-
# idx = 0
|
128 |
-
# for file_path, file_obj in images:
|
129 |
-
# if file_path in files_to_keep:
|
130 |
-
# label = _LABEL_MAP.index(file_path.split("/")[-2])
|
131 |
-
# yield idx, {
|
132 |
-
# "image": {"path": file_path, "bytes": file_obj.read()},
|
133 |
-
# "label": label,
|
134 |
-
# }
|
135 |
-
# idx += 1
|
136 |
-
|
137 |
"""EMT dataset."""
|
138 |
|
139 |
import os
|
140 |
-
import json
|
141 |
-
import pandas as pd
|
142 |
import datasets
|
143 |
|
144 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
@@ -158,41 +20,22 @@ _CITATION = """
|
|
158 |
|
159 |
_DESCRIPTION = """\
|
160 |
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
161 |
-
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.
|
162 |
"""
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
class EMTConfig(datasets.BuilderConfig):
|
167 |
-
"""BuilderConfig for EMT."""
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
Args:
|
172 |
-
data_url: `string`, URL to download the image archive (.tar file).
|
173 |
-
annotation_url: `string`, URL to download the annotations (Parquet file).
|
174 |
-
**kwargs: keyword arguments forwarded to super.
|
175 |
-
"""
|
176 |
-
super(EMTConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
177 |
-
self.data_url = data_url
|
178 |
-
self.annotation_url = annotation_url
|
179 |
|
180 |
|
181 |
class EMT(datasets.GeneratorBasedBuilder):
|
182 |
"""EMT dataset."""
|
183 |
|
184 |
-
BUILDER_CONFIGS = [
|
185 |
-
EMTConfig(
|
186 |
-
name="full_size",
|
187 |
-
description="All images are in their original size.",
|
188 |
-
data_url="https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz",
|
189 |
-
annotation_url="https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations/",
|
190 |
-
)
|
191 |
-
]
|
192 |
-
|
193 |
def _info(self):
|
194 |
return datasets.DatasetInfo(
|
195 |
-
description=_DESCRIPTION
|
196 |
features=datasets.Features(
|
197 |
{
|
198 |
"image": datasets.Image(),
|
@@ -213,12 +56,12 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
213 |
)
|
214 |
|
215 |
def _split_generators(self, dl_manager):
|
216 |
-
archive_path = dl_manager.download(
|
217 |
annotation_paths = {
|
218 |
-
"train": dl_manager.download_and_extract(
|
219 |
-
"test": dl_manager.download_and_extract(
|
220 |
}
|
221 |
-
|
222 |
return [
|
223 |
datasets.SplitGenerator(
|
224 |
name=datasets.Split.TRAIN,
|
@@ -237,32 +80,38 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
237 |
]
|
238 |
|
239 |
def _generate_examples(self, images, annotation_path):
|
240 |
-
"""Generate examples from
|
241 |
-
|
242 |
-
# Load
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
261 |
idx = 0
|
262 |
for file_path, file_obj in images:
|
263 |
-
|
|
|
264 |
yield idx, {
|
265 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
266 |
-
"objects":
|
267 |
}
|
268 |
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""EMT dataset."""
|
2 |
|
3 |
import os
|
|
|
|
|
4 |
import datasets
|
5 |
|
6 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
|
|
20 |
|
21 |
_DESCRIPTION = """\
|
22 |
A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
23 |
+
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.
|
24 |
"""
|
25 |
|
26 |
+
# Image archive URL
|
27 |
+
_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/blob/main/emt_images.tar.gz"
|
|
|
|
|
28 |
|
29 |
+
# Annotations URL (organized in train/test subfolders)
|
30 |
+
_ANNOTATION_REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
class EMT(datasets.GeneratorBasedBuilder):
|
34 |
"""EMT dataset."""
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def _info(self):
|
37 |
return datasets.DatasetInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
features=datasets.Features(
|
40 |
{
|
41 |
"image": datasets.Image(),
|
|
|
56 |
)
|
57 |
|
58 |
def _split_generators(self, dl_manager):
|
59 |
+
archive_path = dl_manager.download(_IMAGE_ARCHIVE_URL)
|
60 |
annotation_paths = {
|
61 |
+
"train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"),
|
62 |
+
"test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"),
|
63 |
}
|
64 |
+
|
65 |
return [
|
66 |
datasets.SplitGenerator(
|
67 |
name=datasets.Split.TRAIN,
|
|
|
80 |
]
|
81 |
|
82 |
def _generate_examples(self, images, annotation_path):
|
83 |
+
"""Generate examples from annotations and image archive."""
|
84 |
+
|
85 |
+
# Load annotation files
|
86 |
+
annotations = {}
|
87 |
+
for root, _, files in os.walk(annotation_path):
|
88 |
+
for file in files:
|
89 |
+
with open(os.path.join(root, file), "r", encoding="utf-8") as f:
|
90 |
+
for line in f:
|
91 |
+
parts = line.strip().split()
|
92 |
+
frame_id, track_id, class_name = parts[:3]
|
93 |
+
bbox = list(map(float, parts[4:8])) # Extract bounding box
|
94 |
+
class_id = hash(class_name) % 1000 # Convert class_name to numeric ID
|
95 |
+
|
96 |
+
img_path = f"{frame_id}.jpg"
|
97 |
+
if img_path not in annotations:
|
98 |
+
annotations[img_path] = []
|
99 |
+
annotations[img_path].append(
|
100 |
+
{
|
101 |
+
"bbox": bbox,
|
102 |
+
"class_id": class_id,
|
103 |
+
"track_id": int(track_id),
|
104 |
+
"class_name": class_name,
|
105 |
+
}
|
106 |
+
)
|
107 |
+
|
108 |
+
# Yield dataset entries
|
109 |
idx = 0
|
110 |
for file_path, file_obj in images:
|
111 |
+
img_name = os.path.basename(file_path)
|
112 |
+
if img_name in annotations:
|
113 |
yield idx, {
|
114 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
115 |
+
"objects": annotations[img_name],
|
116 |
}
|
117 |
idx += 1
|