Update EMT.py
Browse files
EMT.py
CHANGED
@@ -3,7 +3,9 @@
|
|
3 |
import os
|
4 |
import datasets
|
5 |
|
|
|
6 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
|
|
7 |
_LICENSE = "CC-BY-SA 4.0"
|
8 |
|
9 |
_CITATION = """
|
@@ -23,31 +25,25 @@ A multi-task dataset for detection, tracking, prediction, and intention predicti
|
|
23 |
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.
|
24 |
"""
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
|
33 |
-
_GT_OBJECT_CLASSES = {
|
34 |
-
0: "Pedestrian",
|
35 |
-
1: "Cyclist",
|
36 |
-
2: "Motorbike",
|
37 |
-
3: "Small_motorised_vehicle",
|
38 |
-
4: "Car",
|
39 |
-
5: "Medium_vehicle",
|
40 |
-
6: "Large_vehicle",
|
41 |
-
7: "Bus",
|
42 |
-
8: "Emergency_vehicle",
|
43 |
-
}
|
44 |
-
|
45 |
-
# Update: Consider using a predefined set of object classes for easier filtering
|
46 |
-
OBJECT_CLASSES = {v: k for k, v in _GT_OBJECT_CLASSES.items()}
|
47 |
|
48 |
class EMT(datasets.GeneratorBasedBuilder):
|
49 |
"""EMT dataset."""
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def _info(self):
|
52 |
return datasets.DatasetInfo(
|
53 |
description=_DESCRIPTION,
|
@@ -56,7 +52,7 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
56 |
"image": datasets.Image(),
|
57 |
"objects": datasets.Sequence(
|
58 |
{
|
59 |
-
"bbox": datasets.Sequence(datasets.Value("float32")),
|
60 |
"class_id": datasets.Value("int32"),
|
61 |
"track_id": datasets.Value("int32"),
|
62 |
"class_name": datasets.Value("string"),
|
@@ -71,7 +67,12 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
71 |
)
|
72 |
|
73 |
def _split_generators(self, dl_manager):
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
annotation_paths = {
|
76 |
"train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"),
|
77 |
"test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"),
|
@@ -81,49 +82,48 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
81 |
datasets.SplitGenerator(
|
82 |
name=datasets.Split.TRAIN,
|
83 |
gen_kwargs={
|
84 |
-
"images": dl_manager.iter_archive(
|
85 |
"annotation_path": annotation_paths["train"],
|
86 |
},
|
87 |
),
|
88 |
datasets.SplitGenerator(
|
89 |
name=datasets.Split.TEST,
|
90 |
gen_kwargs={
|
91 |
-
"images": dl_manager.iter_archive(
|
92 |
"annotation_path": annotation_paths["test"],
|
93 |
},
|
94 |
),
|
95 |
-
|
96 |
-
def _generate_examples(self, images, annotation_path):
|
97 |
-
"""Generate examples from annotations and image archive."""
|
98 |
|
99 |
-
|
|
|
100 |
annotations = {}
|
101 |
|
102 |
-
# Process each image in the dataset
|
103 |
for file_path, file_obj in images:
|
104 |
img_name = os.path.basename(file_path) # e.g., "000001.jpg"
|
105 |
video_name = os.path.basename(os.path.dirname(file_path)) # e.g., "video_1112"
|
106 |
|
107 |
-
# Expected annotation file
|
108 |
ann_file = os.path.join(annotation_path, f"{video_name}.txt")
|
109 |
|
110 |
-
# Read annotations only for the current video
|
111 |
if os.path.exists(ann_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with open(ann_file, "r", encoding="utf-8") as f:
|
113 |
for line in f:
|
114 |
parts = line.strip().split()
|
115 |
-
if len(parts) < 8:
|
116 |
continue
|
117 |
-
|
118 |
frame_id, track_id, class_name = parts[:3]
|
119 |
-
bbox = list(map(float, parts[4:8]))
|
120 |
-
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
121 |
|
122 |
-
# Match annotations to the correct image
|
123 |
if f"{frame_id}.jpg" == img_name:
|
124 |
-
|
125 |
-
annotations[img_name] = []
|
126 |
-
annotations[img_name].append(
|
127 |
{
|
128 |
"bbox": bbox,
|
129 |
"class_id": class_id,
|
@@ -136,46 +136,12 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
136 |
idx = 0
|
137 |
for file_path, file_obj in images:
|
138 |
img_name = os.path.basename(file_path)
|
139 |
-
|
|
|
|
|
|
|
140 |
yield idx, {
|
141 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
142 |
-
"objects": annotations[img_name],
|
143 |
}
|
144 |
idx += 1
|
145 |
-
|
146 |
-
# def _generate_examples(self, images, annotation_path):
|
147 |
-
# """Generate examples from annotations and image archive."""
|
148 |
-
|
149 |
-
# # Load annotation files
|
150 |
-
# annotations = {}
|
151 |
-
# for root, _, files in os.walk(annotation_path):
|
152 |
-
# for file in files:
|
153 |
-
# with open(os.path.join(root, file), "r", encoding="utf-8") as f:
|
154 |
-
# for line in f:
|
155 |
-
# parts = line.strip().split()
|
156 |
-
# frame_id, track_id, class_name = parts[:3]
|
157 |
-
# bbox = list(map(float, parts[4:8])) # Extract bounding box
|
158 |
-
# class_id = _GT_OBJECT_CLASSES.get(class_name, -1) # Convert class_name to numeric ID, default to -1 if not found
|
159 |
-
|
160 |
-
# img_path = f"{frame_id}.jpg"
|
161 |
-
# if img_path not in annotations:
|
162 |
-
# annotations[img_path] = []
|
163 |
-
# annotations[img_path].append(
|
164 |
-
# {
|
165 |
-
# "bbox": bbox,
|
166 |
-
# "class_id": class_id,
|
167 |
-
# "track_id": int(track_id),
|
168 |
-
# "class_name": class_name,
|
169 |
-
# }
|
170 |
-
# )
|
171 |
-
|
172 |
-
# # Yield dataset entries
|
173 |
-
# idx = 0
|
174 |
-
# for file_path, file_obj in images:
|
175 |
-
# img_name = os.path.basename(file_path)
|
176 |
-
# if img_name in annotations:
|
177 |
-
# yield idx, {
|
178 |
-
# "image": {"path": file_path, "bytes": file_obj.read()},
|
179 |
-
# "objects": annotations[img_name],
|
180 |
-
# }
|
181 |
-
# idx += 1
|
|
|
3 |
import os
|
4 |
import datasets
|
5 |
|
6 |
+
|
7 |
_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
8 |
+
|
9 |
_LICENSE = "CC-BY-SA 4.0"
|
10 |
|
11 |
_CITATION = """
|
|
|
25 |
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.
|
26 |
"""
|
27 |
|
28 |
+
# Annotation repository
|
29 |
+
_ANNOTATION_REPO = "https://huggingface.co/datasets/Murdism/EMT/resolve/main/labels"
|
30 |
|
31 |
+
# Tar file URLs for images
|
32 |
+
_TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/blob/main/train_images.tar.gz"
|
33 |
+
_TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/blob/main/test_images.tar.gz"
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
class EMT(datasets.GeneratorBasedBuilder):
|
37 |
"""EMT dataset."""
|
38 |
|
39 |
+
BUILDER_CONFIGS = [
|
40 |
+
datasets.BuilderConfig(
|
41 |
+
name="full_size",
|
42 |
+
description="All images are in their original size.",
|
43 |
+
version=datasets.Version("1.0.0"),
|
44 |
+
)
|
45 |
+
]
|
46 |
+
|
47 |
def _info(self):
|
48 |
return datasets.DatasetInfo(
|
49 |
description=_DESCRIPTION,
|
|
|
52 |
"image": datasets.Image(),
|
53 |
"objects": datasets.Sequence(
|
54 |
{
|
55 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
56 |
"class_id": datasets.Value("int32"),
|
57 |
"track_id": datasets.Value("int32"),
|
58 |
"class_name": datasets.Value("string"),
|
|
|
67 |
)
|
68 |
|
69 |
def _split_generators(self, dl_manager):
|
70 |
+
"""Download and extract train/test images and annotations."""
|
71 |
+
image_paths = {
|
72 |
+
"train": dl_manager.download_and_extract(_TRAIN_IMAGE_ARCHIVE_URL),
|
73 |
+
"test": dl_manager.download_and_extract(_TEST_IMAGE_ARCHIVE_URL),
|
74 |
+
}
|
75 |
+
|
76 |
annotation_paths = {
|
77 |
"train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"),
|
78 |
"test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"),
|
|
|
82 |
datasets.SplitGenerator(
|
83 |
name=datasets.Split.TRAIN,
|
84 |
gen_kwargs={
|
85 |
+
"images": dl_manager.iter_archive(image_paths["train"]),
|
86 |
"annotation_path": annotation_paths["train"],
|
87 |
},
|
88 |
),
|
89 |
datasets.SplitGenerator(
|
90 |
name=datasets.Split.TEST,
|
91 |
gen_kwargs={
|
92 |
+
"images": dl_manager.iter_archive(image_paths["test"]),
|
93 |
"annotation_path": annotation_paths["test"],
|
94 |
},
|
95 |
),
|
96 |
+
]
|
|
|
|
|
97 |
|
98 |
+
def _generate_examples(self, images, annotation_path):
|
99 |
+
"""Generate dataset examples by matching images to their corresponding annotations."""
|
100 |
annotations = {}
|
101 |
|
|
|
102 |
for file_path, file_obj in images:
|
103 |
img_name = os.path.basename(file_path) # e.g., "000001.jpg"
|
104 |
video_name = os.path.basename(os.path.dirname(file_path)) # e.g., "video_1112"
|
105 |
|
|
|
106 |
ann_file = os.path.join(annotation_path, f"{video_name}.txt")
|
107 |
|
|
|
108 |
if os.path.exists(ann_file):
|
109 |
+
if ann_file not in annotations:
|
110 |
+
annotations[ann_file] = {}
|
111 |
+
|
112 |
+
if img_name not in annotations[ann_file]:
|
113 |
+
annotations[ann_file][img_name] = []
|
114 |
+
|
115 |
with open(ann_file, "r", encoding="utf-8") as f:
|
116 |
for line in f:
|
117 |
parts = line.strip().split()
|
118 |
+
if len(parts) < 8:
|
119 |
continue
|
120 |
+
|
121 |
frame_id, track_id, class_name = parts[:3]
|
122 |
+
bbox = list(map(float, parts[4:8]))
|
123 |
+
class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
124 |
|
|
|
125 |
if f"{frame_id}.jpg" == img_name:
|
126 |
+
annotations[ann_file][img_name].append(
|
|
|
|
|
127 |
{
|
128 |
"bbox": bbox,
|
129 |
"class_id": class_id,
|
|
|
136 |
idx = 0
|
137 |
for file_path, file_obj in images:
|
138 |
img_name = os.path.basename(file_path)
|
139 |
+
video_name = os.path.basename(os.path.dirname(file_path))
|
140 |
+
ann_file = os.path.join(annotation_path, f"{video_name}.txt")
|
141 |
+
|
142 |
+
if ann_file in annotations and img_name in annotations[ann_file]:
|
143 |
yield idx, {
|
144 |
"image": {"path": file_path, "bytes": file_obj.read()},
|
145 |
+
"objects": annotations[ann_file][img_name],
|
146 |
}
|
147 |
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|