Update EMT.py
Browse files
EMT.py
CHANGED
@@ -1,4 +1,212 @@
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import datasets
|
4 |
import tarfile
|
@@ -34,8 +242,8 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
34 |
|
35 |
BUILDER_CONFIGS = [
|
36 |
datasets.BuilderConfig(
|
37 |
-
name="
|
38 |
-
description="
|
39 |
version=datasets.Version("1.0.0"),
|
40 |
)
|
41 |
]
|
@@ -75,66 +283,31 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
75 |
"test": _TEST_ANNOTATION_ARCHIVE_URL,
|
76 |
}
|
77 |
|
78 |
-
# Based on the requested split, we only download the relevant data
|
79 |
-
split = self.config.name # Determine the requested split (train or test)
|
80 |
-
|
81 |
# Ensure paths are correctly resolved for the requested split
|
82 |
-
extracted_paths = dl_manager.download_and_extract(
|
83 |
-
image_archives = dl_manager.download_and_extract(
|
84 |
-
|
85 |
# Ensure annotation paths point to the correct subdirectory
|
86 |
-
|
87 |
-
|
88 |
|
89 |
return [
|
90 |
datasets.SplitGenerator(
|
91 |
-
name=datasets.Split.TRAIN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
gen_kwargs={
|
93 |
-
"images": dl_manager.iter_archive(
|
94 |
-
"annotation_path":
|
95 |
},
|
96 |
),
|
97 |
]
|
98 |
|
99 |
-
|
100 |
-
# def _split_generators(self, dl_manager):
|
101 |
-
# """Download (if not cached) and prepare dataset splits."""
|
102 |
-
|
103 |
-
# image_urls = {
|
104 |
-
# "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
105 |
-
# "test": _TEST_IMAGE_ARCHIVE_URL,
|
106 |
-
# }
|
107 |
-
|
108 |
-
# annotation_urls = {
|
109 |
-
# "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
110 |
-
# "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
111 |
-
# }
|
112 |
-
|
113 |
-
# # Ensure paths are correctly resolved
|
114 |
-
# extracted_paths = dl_manager.download_and_extract(annotation_urls)
|
115 |
-
# image_archives = dl_manager.download_and_extract(image_urls)
|
116 |
-
|
117 |
-
# # ✅ Ensure annotation paths point to the correct subdirectory
|
118 |
-
# train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
|
119 |
-
# test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
|
120 |
-
|
121 |
-
# return [
|
122 |
-
# datasets.SplitGenerator(
|
123 |
-
# name=datasets.Split.TRAIN,
|
124 |
-
# gen_kwargs={
|
125 |
-
# "images": dl_manager.iter_archive(image_archives["train"]),
|
126 |
-
# "annotation_path": train_annotation_path, # ✅ Corrected path
|
127 |
-
# },
|
128 |
-
# ),
|
129 |
-
# datasets.SplitGenerator(
|
130 |
-
# name=datasets.Split.TEST,
|
131 |
-
# gen_kwargs={
|
132 |
-
# "images": dl_manager.iter_archive(image_archives["test"]),
|
133 |
-
# "annotation_path": test_annotation_path, # ✅ Corrected path
|
134 |
-
# },
|
135 |
-
# ),
|
136 |
-
# ]
|
137 |
-
|
138 |
def _generate_examples(self, images, annotation_path):
|
139 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
140 |
|
@@ -205,5 +378,3 @@ class EMT(datasets.GeneratorBasedBuilder):
|
|
205 |
"objects": annotations[key],
|
206 |
}
|
207 |
idx += 1
|
208 |
-
|
209 |
-
|
|
|
1 |
|
2 |
+
# import os
|
3 |
+
# import datasets
|
4 |
+
# import tarfile
|
5 |
+
|
6 |
+
# _HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
|
7 |
+
# _LICENSE = "CC-BY-SA 4.0"
|
8 |
+
# _CITATION = """
|
9 |
+
# @article{EMTdataset2025,
|
10 |
+
# title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},
|
11 |
+
# author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},
|
12 |
+
# year={2025},
|
13 |
+
# eprint={2502.19260},
|
14 |
+
# archivePrefix={arXiv},
|
15 |
+
# primaryClass={cs.CV},
|
16 |
+
# url={https://arxiv.org/abs/2502.19260}
|
17 |
+
# }
|
18 |
+
# """
|
19 |
+
|
20 |
+
# _DESCRIPTION = """\
|
21 |
+
# A multi-task dataset for detection, tracking, prediction, and intention prediction.
|
22 |
+
# This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection and tracking.
|
23 |
+
# """
|
24 |
+
|
25 |
+
# _TRAIN_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_images.tar.gz"
|
26 |
+
# _TEST_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_images.tar.gz"
|
27 |
+
|
28 |
+
# _TRAIN_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/train_annotation.tar.gz"
|
29 |
+
# _TEST_ANNOTATION_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/test_annotation.tar.gz"
|
30 |
+
|
31 |
+
|
32 |
+
# class EMT(datasets.GeneratorBasedBuilder):
|
33 |
+
# """EMT dataset."""
|
34 |
+
|
35 |
+
# BUILDER_CONFIGS = [
|
36 |
+
# datasets.BuilderConfig(
|
37 |
+
# name="full_size",
|
38 |
+
# description="All images are in their original size.",
|
39 |
+
# version=datasets.Version("1.0.0"),
|
40 |
+
# )
|
41 |
+
# ]
|
42 |
+
|
43 |
+
# def _info(self):
|
44 |
+
# return datasets.DatasetInfo(
|
45 |
+
# description=_DESCRIPTION,
|
46 |
+
# features=datasets.Features(
|
47 |
+
# {
|
48 |
+
# "image": datasets.Image(),
|
49 |
+
# "objects": datasets.Sequence(
|
50 |
+
# {
|
51 |
+
# "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
52 |
+
# "class_id": datasets.Value("int32"),
|
53 |
+
# "track_id": datasets.Value("int32"),
|
54 |
+
# "class_name": datasets.Value("string"),
|
55 |
+
# }
|
56 |
+
# ),
|
57 |
+
# }
|
58 |
+
# ),
|
59 |
+
# supervised_keys=None,
|
60 |
+
# homepage=_HOMEPAGE,
|
61 |
+
# license=_LICENSE,
|
62 |
+
# citation=_CITATION,
|
63 |
+
# )
|
64 |
+
|
65 |
+
# def _split_generators(self, dl_manager):
|
66 |
+
# """Download (if not cached) and prepare dataset splits."""
|
67 |
+
|
68 |
+
# image_urls = {
|
69 |
+
# "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
70 |
+
# "test": _TEST_IMAGE_ARCHIVE_URL,
|
71 |
+
# }
|
72 |
+
|
73 |
+
# annotation_urls = {
|
74 |
+
# "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
75 |
+
# "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
76 |
+
# }
|
77 |
+
|
78 |
+
# # Based on the requested split, we only download the relevant data
|
79 |
+
# split = self.config.name # Determine the requested split (train or test)
|
80 |
+
|
81 |
+
# # Ensure paths are correctly resolved for the requested split
|
82 |
+
# extracted_paths = dl_manager.download_and_extract({split: annotation_urls[split]})
|
83 |
+
# image_archives = dl_manager.download_and_extract({split: image_urls[split]})
|
84 |
+
|
85 |
+
# # Ensure annotation paths point to the correct subdirectory
|
86 |
+
# annotation_path = os.path.join(extracted_paths[split], "annotations", split)
|
87 |
+
# image_path = image_archives[split]
|
88 |
+
|
89 |
+
# return [
|
90 |
+
# datasets.SplitGenerator(
|
91 |
+
# name=datasets.Split.TRAIN if split == "train" else datasets.Split.TEST,
|
92 |
+
# gen_kwargs={
|
93 |
+
# "images": dl_manager.iter_archive(image_path),
|
94 |
+
# "annotation_path": annotation_path,
|
95 |
+
# },
|
96 |
+
# ),
|
97 |
+
# ]
|
98 |
+
|
99 |
+
|
100 |
+
# # def _split_generators(self, dl_manager):
|
101 |
+
# # """Download (if not cached) and prepare dataset splits."""
|
102 |
+
|
103 |
+
# # image_urls = {
|
104 |
+
# # "train": _TRAIN_IMAGE_ARCHIVE_URL,
|
105 |
+
# # "test": _TEST_IMAGE_ARCHIVE_URL,
|
106 |
+
# # }
|
107 |
+
|
108 |
+
# # annotation_urls = {
|
109 |
+
# # "train": _TRAIN_ANNOTATION_ARCHIVE_URL,
|
110 |
+
# # "test": _TEST_ANNOTATION_ARCHIVE_URL,
|
111 |
+
# # }
|
112 |
+
|
113 |
+
# # # Ensure paths are correctly resolved
|
114 |
+
# # extracted_paths = dl_manager.download_and_extract(annotation_urls)
|
115 |
+
# # image_archives = dl_manager.download_and_extract(image_urls)
|
116 |
+
|
117 |
+
# # # ✅ Ensure annotation paths point to the correct subdirectory
|
118 |
+
# # train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
|
119 |
+
# # test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
|
120 |
+
|
121 |
+
# # return [
|
122 |
+
# # datasets.SplitGenerator(
|
123 |
+
# # name=datasets.Split.TRAIN,
|
124 |
+
# # gen_kwargs={
|
125 |
+
# # "images": dl_manager.iter_archive(image_archives["train"]),
|
126 |
+
# # "annotation_path": train_annotation_path, # ✅ Corrected path
|
127 |
+
# # },
|
128 |
+
# # ),
|
129 |
+
# # datasets.SplitGenerator(
|
130 |
+
# # name=datasets.Split.TEST,
|
131 |
+
# # gen_kwargs={
|
132 |
+
# # "images": dl_manager.iter_archive(image_archives["test"]),
|
133 |
+
# # "annotation_path": test_annotation_path, # ✅ Corrected path
|
134 |
+
# # },
|
135 |
+
# # ),
|
136 |
+
# # ]
|
137 |
+
|
138 |
+
# def _generate_examples(self, images, annotation_path):
|
139 |
+
# """Generate dataset examples by matching images to their corresponding annotations."""
|
140 |
+
|
141 |
+
# annotations = {}
|
142 |
+
|
143 |
+
# # Determine whether we're processing train or test split
|
144 |
+
# if "train" in annotation_path:
|
145 |
+
# annotation_split = "train"
|
146 |
+
# elif "test" in annotation_path:
|
147 |
+
# annotation_split = "test"
|
148 |
+
# else:
|
149 |
+
# raise ValueError(f"Unknown annotation path: {annotation_path}")
|
150 |
+
|
151 |
+
# ann_dir = annotation_path
|
152 |
+
|
153 |
+
# print(f"Extracted annotations path: {annotation_path}")
|
154 |
+
# print(f"Looking for annotations in: {ann_dir}")
|
155 |
+
|
156 |
+
# # Check if annotation directory exists
|
157 |
+
# if not os.path.exists(ann_dir):
|
158 |
+
# raise FileNotFoundError(f"Annotation directory does not exist: {ann_dir}")
|
159 |
+
|
160 |
+
# # Extract annotation files and read their contents
|
161 |
+
# for ann_file in os.listdir(ann_dir):
|
162 |
+
# video_name = os.path.splitext(ann_file)[0] # Extract video folder name from file
|
163 |
+
# ann_path = os.path.join(ann_dir, ann_file)
|
164 |
+
|
165 |
+
# if os.path.isdir(ann_path):
|
166 |
+
# continue # Skip directories
|
167 |
+
|
168 |
+
# print("Processing annotation file:", ann_path)
|
169 |
+
|
170 |
+
# with open(ann_path, "r", encoding="utf-8") as f:
|
171 |
+
# for line in f:
|
172 |
+
# parts = line.strip().split()
|
173 |
+
# if len(parts) < 8:
|
174 |
+
# continue
|
175 |
+
|
176 |
+
# frame_id, track_id, class_name = parts[:3]
|
177 |
+
# bbox = list(map(float, parts[4:8]))
|
178 |
+
# class_id = _GT_OBJECT_CLASSES.get(class_name, -1)
|
179 |
+
# img_name = f"{frame_id}.jpg"
|
180 |
+
|
181 |
+
# # Store annotation in a dictionary
|
182 |
+
# key = f"{video_name}/{img_name}"
|
183 |
+
# if key not in annotations:
|
184 |
+
# annotations[key] = []
|
185 |
+
|
186 |
+
# annotations[key].append(
|
187 |
+
# {
|
188 |
+
# "bbox": bbox,
|
189 |
+
# "class_id": class_id,
|
190 |
+
# "track_id": int(track_id),
|
191 |
+
# "class_name": class_name,
|
192 |
+
# }
|
193 |
+
# )
|
194 |
+
|
195 |
+
# # Yield dataset entries
|
196 |
+
# idx = 0
|
197 |
+
# for file_path, file_obj in images:
|
198 |
+
# img_name = os.path.basename(file_path)
|
199 |
+
# video_name = os.path.basename(os.path.dirname(file_path)) # Match the video folder
|
200 |
+
# key = f"{video_name}/{img_name}"
|
201 |
+
|
202 |
+
# if key in annotations:
|
203 |
+
# yield idx, {
|
204 |
+
# "image": {"path": file_path, "bytes": file_obj.read()},
|
205 |
+
# "objects": annotations[key],
|
206 |
+
# }
|
207 |
+
# idx += 1
|
208 |
+
|
209 |
+
|
210 |
import os
|
211 |
import datasets
|
212 |
import tarfile
|
|
|
242 |
|
243 |
BUILDER_CONFIGS = [
|
244 |
datasets.BuilderConfig(
|
245 |
+
name="default",
|
246 |
+
description="Dataset with train and test splits",
|
247 |
version=datasets.Version("1.0.0"),
|
248 |
)
|
249 |
]
|
|
|
283 |
"test": _TEST_ANNOTATION_ARCHIVE_URL,
|
284 |
}
|
285 |
|
|
|
|
|
|
|
286 |
# Ensure paths are correctly resolved for the requested split
|
287 |
+
extracted_paths = dl_manager.download_and_extract(annotation_urls)
|
288 |
+
image_archives = dl_manager.download_and_extract(image_urls)
|
289 |
+
|
290 |
# Ensure annotation paths point to the correct subdirectory
|
291 |
+
train_annotation_path = os.path.join(extracted_paths["train"], "annotations", "train")
|
292 |
+
test_annotation_path = os.path.join(extracted_paths["test"], "annotations", "test")
|
293 |
|
294 |
return [
|
295 |
datasets.SplitGenerator(
|
296 |
+
name=datasets.Split.TRAIN,
|
297 |
+
gen_kwargs={
|
298 |
+
"images": dl_manager.iter_archive(image_archives["train"]),
|
299 |
+
"annotation_path": train_annotation_path,
|
300 |
+
},
|
301 |
+
),
|
302 |
+
datasets.SplitGenerator(
|
303 |
+
name=datasets.Split.TEST,
|
304 |
gen_kwargs={
|
305 |
+
"images": dl_manager.iter_archive(image_archives["test"]),
|
306 |
+
"annotation_path": test_annotation_path,
|
307 |
},
|
308 |
),
|
309 |
]
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
def _generate_examples(self, images, annotation_path):
|
312 |
"""Generate dataset examples by matching images to their corresponding annotations."""
|
313 |
|
|
|
378 |
"objects": annotations[key],
|
379 |
}
|
380 |
idx += 1
|
|
|
|