File size: 10,507 Bytes
b051880
 
d79abfc
f98a043
0707d05
b051880
f0f9dff
 
d79abfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ceae5
d79abfc
 
 
 
8a3e216
d79abfc
8a3e216
 
 
36fbec5
9d79b23
d79abfc
 
 
8a3e216
d79abfc
 
 
 
 
 
 
 
 
086ae8e
cb79d6c
 
 
 
086ae8e
 
cac62cc
d79abfc
 
 
 
f0f9dff
d79abfc
 
 
8a3e216
 
 
d79abfc
8a3e216
cac62cc
d79abfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137fb06
d79abfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c54f39
d79abfc
 
137fb06
d79abfc
 
 
 
 
 
 
 
 
af04f31
d79abfc
 
 
b051880
d79abfc
cb79d6c
d79abfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af04f31
 
d79abfc
af04f31
d79abfc
af04f31
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import tempfile
import base64
import cv2
import streamlit as st
import PIL
from ultralytics import YOLO

###############################################################################
# Helper function: Display an HTML5 video with autoplay, controls, and muted
###############################################################################
def show_autoplay_video(video_data: bytes, title: str = "Video"):
    if not video_data:
        st.warning(f"No {title} video available.")
        return
    video_base64 = base64.b64encode(video_data).decode()
    video_html = f"""
    <h4>{title}</h4>
    <video width="100%" height="auto" controls autoplay muted>
        <source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
        Your browser does not support the video tag.
    </video>
    """
    st.markdown(video_html, unsafe_allow_html=True)

###############################################################################
# Session state initialization for processed results (for uploaded files)
###############################################################################
if "processed_frames" not in st.session_state:
    st.session_state["processed_frames"] = []
if "shortened_video_data" not in st.session_state:
    st.session_state["shortened_video_data"] = None
if "shortened_video_ready" not in st.session_state:
    st.session_state["shortened_video_ready"] = False

###############################################################################
# Configure YOLO model path and Streamlit page
###############################################################################
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
st.set_page_config(
    page_title="Fire Detection: Original vs. Processed Video",
    page_icon="🔥",
    layout="wide",
    initial_sidebar_state="expanded"
)

###############################################################################
# SIDEBAR: Upload file, set confidence, video option, and select an example pair
###############################################################################
with st.sidebar:
    st.header("Video Input Options")
    example_option = st.selectbox(
        "Select Example Pair (optional)",
        ["None", "T Example", "LA Example"]
    )
    source_file = st.file_uploader(
        "Or upload your own file...",
        type=("jpg", "jpeg", "png", "bmp", "webp", "mp4")
    )
    confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
    video_option = st.selectbox(
        "Select Video Shortening Option",
        ["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
    )
    progress_text = st.empty()
    progress_bar = st.progress(0)

###############################################################################
# MAIN PAGE TITLE
###############################################################################
st.title("Fire Detection: Original vs. Processed Video")

###############################################################################
# Load YOLO model
###############################################################################
try:
    model = YOLO(model_path)
except Exception as ex:
    st.error(f"Unable to load model. Check model path: {model_path}")
    st.error(ex)

###############################################################################
# Determine source: Example or Uploaded File
###############################################################################
original_video_data = None
processed_video_data = None  # For example pairs, these are loaded directly

if example_option != "None":
    # An example pair was chosen. Load the videos from disk.
    if example_option == "T Example":
        # T1.mp4: original, T2.mpg: processed (analysis completed video)
        try:
            with open("T1.mp4", "rb") as f:
                original_video_data = f.read()
            with open("T2.mpg", "rb") as f:
                processed_video_data = f.read()
        except Exception as ex:
            st.error("Error loading T Example videos. Ensure T1.mp4 and T2.mpg are in your repo.")
    elif example_option == "LA Example":
        # LA1.mp4: original, LA2.mp4: processed
        try:
            with open("LA1.mp4", "rb") as f:
                original_video_data = f.read()
            with open("LA2.mp4", "rb") as f:
                processed_video_data = f.read()
        except Exception as ex:
            st.error("Error loading LA Example videos. Ensure LA1.mp4 and LA2.mp4 are in your repo.")
else:
    # No example selected. Use uploaded file if available.
    if source_file:
        file_type = source_file.type.split('/')[0]
        if file_type == 'image':
            # For images, simply show the uploaded image (and detection result below)
            original_image = PIL.Image.open(source_file)
            # Convert image to bytes for display if needed
            buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
            original_image.save(buf.name, format="PNG")
            with open(buf.name, "rb") as f:
                original_video_data = f.read()  # Actually, this is just an image preview.
        else:
            # For video, save to a temporary file and load its bytes.
            tfile = tempfile.NamedTemporaryFile(delete=False)
            tfile.write(source_file.read())
            tfile.flush()
            with open(tfile.name, "rb") as vf:
                original_video_data = vf.read()
            # Also open video with OpenCV for processing below.
            vidcap = cv2.VideoCapture(tfile.name)
    else:
        st.info("Please select an example pair or upload a file.")

###############################################################################
# Display the Original and Result columns side-by-side
###############################################################################
col1, col2 = st.columns(2)

# Left column: Original video
with col1:
    st.subheader("Original File")
    if original_video_data:
        show_autoplay_video(original_video_data, title="Original")
    else:
        st.info("No original video available.")

###############################################################################
# DETECTION: For uploaded video files (not example pairs) run YOLO analysis
###############################################################################
# We only run detection if no example pair is selected and if an upload is provided.
if example_option == "None" and source_file and source_file.type.split('/')[0] != 'image':
    # Reset processed frames for a new analysis
    st.session_state["processed_frames"] = []
    frame_count = 0
    orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    width  = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    # Determine sampling interval
    if video_option == "Original FPS":
        sample_interval = 1
        output_fps = orig_fps
    elif video_option == "1 fps":
        sample_interval = int(orig_fps) if orig_fps > 0 else 1
        output_fps = 1
    elif video_option == "1 frame per 5 seconds":
        sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
        output_fps = 1
    elif video_option == "1 frame per 10 seconds":
        sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
        output_fps = 1
    elif video_option == "1 frame per 15 seconds":
        sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
        output_fps = 1
    else:
        sample_interval = 1
        output_fps = orig_fps

    success, image = vidcap.read()
    while success:
        if frame_count % sample_interval == 0:
            res = model.predict(image, conf=confidence)
            res_plotted = res[0].plot()[:, :, ::-1]
            st.session_state["processed_frames"].append(res_plotted)
            # Update progress
            if total_frames > 0:
                progress_pct = int((frame_count / total_frames) * 100)
                progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
                progress_bar.progress(min(100, progress_pct))
            else:
                progress_text.text(f"Processing frame {frame_count}")
        frame_count += 1
        success, image = vidcap.read()

    progress_text.text("Video processing complete!")
    progress_bar.progress(100)

    # Create shortened video from processed frames
    processed_frames = st.session_state["processed_frames"]
    if processed_frames:
        temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
        for frame in processed_frames:
            out.write(frame)
        out.release()

        with open(temp_video_file.name, 'rb') as video_file:
            st.session_state["shortened_video_data"] = video_file.read()
            st.session_state["shortened_video_ready"] = True

        st.success("Processed video created successfully!")

###############################################################################
# Right column: Display the Processed (Result) video
###############################################################################
with col2:
    st.subheader("Result File")
    # For example pairs, use the preloaded processed_video_data
    if processed_video_data:
        show_autoplay_video(processed_video_data, title="Processed")
    # Otherwise, if a processed video has been generated from an upload, show it
    elif st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
        show_autoplay_video(st.session_state["shortened_video_data"], title="Processed")
    else:
        st.info("No processed video available yet. Run detection if you uploaded a file.")

###############################################################################
# Always display the download button if a processed video is ready
###############################################################################
if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
    st.download_button(
        label="Download Processed Video",
        data=st.session_state["shortened_video_data"],
        file_name="processed_video.mp4",
        mime="video/mp4"
    )