Spaces:
Sleeping
Sleeping
File size: 10,507 Bytes
b051880 d79abfc f98a043 0707d05 b051880 f0f9dff d79abfc f8ceae5 d79abfc 8a3e216 d79abfc 8a3e216 36fbec5 9d79b23 d79abfc 8a3e216 d79abfc 086ae8e cb79d6c 086ae8e cac62cc d79abfc f0f9dff d79abfc 8a3e216 d79abfc 8a3e216 cac62cc d79abfc 137fb06 d79abfc 9c54f39 d79abfc 137fb06 d79abfc af04f31 d79abfc b051880 d79abfc cb79d6c d79abfc af04f31 d79abfc af04f31 d79abfc af04f31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import tempfile
import base64
import cv2
import streamlit as st
import PIL
from ultralytics import YOLO
###############################################################################
# Helper function: Display an HTML5 video with autoplay, controls, and muted
###############################################################################
def show_autoplay_video(video_data: bytes, title: str = "Video"):
if not video_data:
st.warning(f"No {title} video available.")
return
video_base64 = base64.b64encode(video_data).decode()
video_html = f"""
<h4>{title}</h4>
<video width="100%" height="auto" controls autoplay muted>
<source src="data:video/mp4;base64,{video_base64}" type="video/mp4">
Your browser does not support the video tag.
</video>
"""
st.markdown(video_html, unsafe_allow_html=True)
###############################################################################
# Session state initialization for processed results (for uploaded files)
###############################################################################
if "processed_frames" not in st.session_state:
st.session_state["processed_frames"] = []
if "shortened_video_data" not in st.session_state:
st.session_state["shortened_video_data"] = None
if "shortened_video_ready" not in st.session_state:
st.session_state["shortened_video_ready"] = False
###############################################################################
# Configure YOLO model path and Streamlit page
###############################################################################
model_path = 'https://huggingface.co/spaces/tstone87/ccr-colorado/resolve/main/best.pt'
st.set_page_config(
page_title="Fire Detection: Original vs. Processed Video",
page_icon="🔥",
layout="wide",
initial_sidebar_state="expanded"
)
###############################################################################
# SIDEBAR: Upload file, set confidence, video option, and select an example pair
###############################################################################
with st.sidebar:
st.header("Video Input Options")
example_option = st.selectbox(
"Select Example Pair (optional)",
["None", "T Example", "LA Example"]
)
source_file = st.file_uploader(
"Or upload your own file...",
type=("jpg", "jpeg", "png", "bmp", "webp", "mp4")
)
confidence = float(st.slider("Select Model Confidence", 25, 100, 40)) / 100
video_option = st.selectbox(
"Select Video Shortening Option",
["Original FPS", "1 fps", "1 frame per 5 seconds", "1 frame per 10 seconds", "1 frame per 15 seconds"]
)
progress_text = st.empty()
progress_bar = st.progress(0)
###############################################################################
# MAIN PAGE TITLE
###############################################################################
st.title("Fire Detection: Original vs. Processed Video")
###############################################################################
# Load YOLO model
###############################################################################
try:
model = YOLO(model_path)
except Exception as ex:
st.error(f"Unable to load model. Check model path: {model_path}")
st.error(ex)
###############################################################################
# Determine source: Example or Uploaded File
###############################################################################
original_video_data = None
processed_video_data = None # For example pairs, these are loaded directly
if example_option != "None":
# An example pair was chosen. Load the videos from disk.
if example_option == "T Example":
# T1.mp4: original, T2.mpg: processed (analysis completed video)
try:
with open("T1.mp4", "rb") as f:
original_video_data = f.read()
with open("T2.mpg", "rb") as f:
processed_video_data = f.read()
except Exception as ex:
st.error("Error loading T Example videos. Ensure T1.mp4 and T2.mpg are in your repo.")
elif example_option == "LA Example":
# LA1.mp4: original, LA2.mp4: processed
try:
with open("LA1.mp4", "rb") as f:
original_video_data = f.read()
with open("LA2.mp4", "rb") as f:
processed_video_data = f.read()
except Exception as ex:
st.error("Error loading LA Example videos. Ensure LA1.mp4 and LA2.mp4 are in your repo.")
else:
# No example selected. Use uploaded file if available.
if source_file:
file_type = source_file.type.split('/')[0]
if file_type == 'image':
# For images, simply show the uploaded image (and detection result below)
original_image = PIL.Image.open(source_file)
# Convert image to bytes for display if needed
buf = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
original_image.save(buf.name, format="PNG")
with open(buf.name, "rb") as f:
original_video_data = f.read() # Actually, this is just an image preview.
else:
# For video, save to a temporary file and load its bytes.
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(source_file.read())
tfile.flush()
with open(tfile.name, "rb") as vf:
original_video_data = vf.read()
# Also open video with OpenCV for processing below.
vidcap = cv2.VideoCapture(tfile.name)
else:
st.info("Please select an example pair or upload a file.")
###############################################################################
# Display the Original and Result columns side-by-side
###############################################################################
col1, col2 = st.columns(2)
# Left column: Original video
with col1:
st.subheader("Original File")
if original_video_data:
show_autoplay_video(original_video_data, title="Original")
else:
st.info("No original video available.")
###############################################################################
# DETECTION: For uploaded video files (not example pairs) run YOLO analysis
###############################################################################
# We only run detection if no example pair is selected and if an upload is provided.
if example_option == "None" and source_file and source_file.type.split('/')[0] != 'image':
# Reset processed frames for a new analysis
st.session_state["processed_frames"] = []
frame_count = 0
orig_fps = vidcap.get(cv2.CAP_PROP_FPS)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Determine sampling interval
if video_option == "Original FPS":
sample_interval = 1
output_fps = orig_fps
elif video_option == "1 fps":
sample_interval = int(orig_fps) if orig_fps > 0 else 1
output_fps = 1
elif video_option == "1 frame per 5 seconds":
sample_interval = int(orig_fps * 5) if orig_fps > 0 else 5
output_fps = 1
elif video_option == "1 frame per 10 seconds":
sample_interval = int(orig_fps * 10) if orig_fps > 0 else 10
output_fps = 1
elif video_option == "1 frame per 15 seconds":
sample_interval = int(orig_fps * 15) if orig_fps > 0 else 15
output_fps = 1
else:
sample_interval = 1
output_fps = orig_fps
success, image = vidcap.read()
while success:
if frame_count % sample_interval == 0:
res = model.predict(image, conf=confidence)
res_plotted = res[0].plot()[:, :, ::-1]
st.session_state["processed_frames"].append(res_plotted)
# Update progress
if total_frames > 0:
progress_pct = int((frame_count / total_frames) * 100)
progress_text.text(f"Processing frame {frame_count} / {total_frames} ({progress_pct}%)")
progress_bar.progress(min(100, progress_pct))
else:
progress_text.text(f"Processing frame {frame_count}")
frame_count += 1
success, image = vidcap.read()
progress_text.text("Video processing complete!")
progress_bar.progress(100)
# Create shortened video from processed frames
processed_frames = st.session_state["processed_frames"]
if processed_frames:
temp_video_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_video_file.name, fourcc, output_fps, (width, height))
for frame in processed_frames:
out.write(frame)
out.release()
with open(temp_video_file.name, 'rb') as video_file:
st.session_state["shortened_video_data"] = video_file.read()
st.session_state["shortened_video_ready"] = True
st.success("Processed video created successfully!")
###############################################################################
# Right column: Display the Processed (Result) video
###############################################################################
with col2:
st.subheader("Result File")
# For example pairs, use the preloaded processed_video_data
if processed_video_data:
show_autoplay_video(processed_video_data, title="Processed")
# Otherwise, if a processed video has been generated from an upload, show it
elif st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
show_autoplay_video(st.session_state["shortened_video_data"], title="Processed")
else:
st.info("No processed video available yet. Run detection if you uploaded a file.")
###############################################################################
# Always display the download button if a processed video is ready
###############################################################################
if st.session_state["shortened_video_ready"] and st.session_state["shortened_video_data"]:
st.download_button(
label="Download Processed Video",
data=st.session_state["shortened_video_data"],
file_name="processed_video.mp4",
mime="video/mp4"
)
|