File size: 26,408 Bytes
6c02161
b2d8a8c
15059e3
6df3b9e
60eb847
ac7355c
 
51043fd
 
5e9d470
 
 
ac7355c
 
 
 
 
 
 
 
 
b2d8a8c
ac7355c
6b78ccb
 
 
 
2936f7d
6b78ccb
98d025d
ac7355c
15059e3
ac7355c
c022c1a
472d32d
c022c1a
 
 
9df60ba
c022c1a
15059e3
5e9d470
c022c1a
9df60ba
5e9d470
472d32d
 
 
 
 
 
 
22e7225
ac7355c
5e9d470
ac7355c
 
44d4a2f
ac7355c
6b78ccb
01bd804
649509e
ac7355c
dbb603e
01bd804
ac7355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649509e
ac7355c
2936f7d
0d14459
 
a96918a
d21cf89
 
 
 
 
 
 
fa7e403
a96918a
ac7355c
 
a96918a
ac7355c
5e9d470
ac7355c
 
5e9d470
 
ac7355c
 
858dd79
 
ac7355c
5e9d470
310cc12
ac7355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310cc12
a96918a
ac7355c
 
4c3deb1
 
5e9d470
 
 
 
 
a96918a
ac7355c
 
e6c9d72
ac7355c
 
 
 
44d4a2f
ac7355c
44d4a2f
ac7355c
 
5e9d470
 
44d4a2f
5e9d470
44d4a2f
 
5e9d470
 
ac7355c
44d4a2f
 
 
5e9d470
ac7355c
 
 
 
 
5e9d470
 
ac7355c
 
 
44d4a2f
 
 
 
 
 
5e9d470
 
44d4a2f
5e9d470
44d4a2f
5e9d470
 
 
 
44d4a2f
5e9d470
 
 
 
 
 
 
 
44d4a2f
5e9d470
44d4a2f
ac7355c
44d4a2f
5e9d470
 
44d4a2f
 
ac7355c
44d4a2f
 
 
 
 
5e9d470
 
 
 
 
 
44d4a2f
ac7355c
44d4a2f
5e9d470
 
44d4a2f
5e9d470
 
 
b1201e2
44d4a2f
 
ac7355c
44d4a2f
5e9d470
 
44d4a2f
ac7355c
5e9d470
 
ac7355c
 
 
44d4a2f
 
5e9d470
 
 
 
 
 
 
 
44d4a2f
 
5e9d470
44d4a2f
ac7355c
 
 
 
 
 
d21cf89
ac7355c
 
 
 
 
5e9d470
44d4a2f
24d1064
ac7355c
 
5e9d470
 
 
44d4a2f
ac7355c
24d1064
ac7355c
 
 
 
 
24d1064
310cc12
ac7355c
 
310cc12
 
ac7355c
 
 
 
 
 
 
 
310cc12
5e9d470
24d1064
310cc12
ac7355c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
ac7355c
5e9d470
 
ac7355c
 
 
5e9d470
 
 
649509e
 
ac7355c
 
649509e
5bb3bd1
ac7355c
 
 
649509e
24d1064
ac7355c
24d1064
 
649509e
15059e3
649509e
3fe10eb
649509e
fd82b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649509e
 
 
 
 
8cd422c
 
 
 
 
 
 
 
 
 
5e9d470
8cd422c
 
649509e
 
 
15059e3
 
85b4489
15059e3
5730add
ac7355c
649509e
725074b
ac7355c
4c3deb1
85b4489
725074b
ac7355c
 
5e9d470
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import gradio as gr
import subprocess
import os
import spaces
import sys
import shutil
import tempfile
import uuid
import re
import time
import copy
from collections import Counter
from tqdm import tqdm
from einops import rearrange
import numpy as np
import json

import torch
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf

# --- Install flash-attn (if needed) ---
print("Installing flash-attn...")
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True
)

# --- Download and set up stage1 files ---
from huggingface_hub import snapshot_download
folder_path = "./xcodec_mini_infer"
if not os.path.exists(folder_path):
    os.mkdir(folder_path)
    print(f"Folder created at: {folder_path}")
else:
    print(f"Folder already exists at: {folder_path}")

snapshot_download(
    repo_id="m-a-p/xcodec_mini_infer",
    local_dir=folder_path
)

# Change working directory to current folder
inference_dir = "."
try:
    os.chdir(inference_dir)
    print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
    print(f"Directory not found: {inference_dir}")
    exit(1)

# --- Append required module paths ---
base_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(base_path, "xcodec_mini_infer"))
sys.path.append(os.path.join(base_path, "xcodec_mini_infer", "descriptaudiocodec"))

# --- Additional imports (vocoder & post processing) ---
from omegaconf import OmegaConf
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
from models.soundstream_hubert_new import SoundStream

# Import vocoder functions (ensure these modules exist)
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched

# ----------------------- Global Configuration -----------------------
# Stage1 and Stage2 model identifiers (change if needed)
STAGE1_MODEL = "m-a-p/YuE-s1-7B-anneal-en-cot"
STAGE2_MODEL = "m-a-p/YuE-s2-1B-general"
# Vocoder model files (paths in the xcodec snapshot)
BASIC_MODEL_CONFIG = os.path.join(folder_path, "final_ckpt/config.yaml")
RESUME_PATH = os.path.join(folder_path, "final_ckpt/ckpt_00360000.pth")
VOCAL_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_131000.pth")
INST_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_151000.pth")
VOCODER_CONFIG_PATH = os.path.join(folder_path, "decoders/config.yaml")

# Misc settings
MAX_NEW_TOKENS = 15         # Duration slider (in seconds, scaled internally)
RUN_N_SEGMENTS = 2          # Number of segments to generate
STAGE2_BATCH_SIZE = 4       # Batch size for stage2 inference

# You may change these defaults via Gradio input (see below)

# ----------------------- Device Setup -----------------------
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# ----------------------- Load Stage1 Models and Tokenizer -----------------------
print("Loading Stage 1 model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(
    STAGE1_MODEL,
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
).to(device)
model.eval()

model_stage2 = AutoModelForCausalLM.from_pretrained(
    STAGE2_MODEL,
    torch_dtype=torch.float16,
    attn_implementation="flash_attention_2",
).to(device)
model_stage2.eval()

mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")

# Two separate codec manipulators: one for Stage1 and one for Stage2 (with a higher number of quantizers)
codectool = CodecManipulator("xcodec", 0, 1)
codectool_stage2 = CodecManipulator("xcodec", 0, 8)

# Load codec (xcodec) model for Stage1 & Stage2 decoding
model_config = OmegaConf.load(BASIC_MODEL_CONFIG)
codec_class = eval(model_config.generator.name)
codec_model = codec_class(**model_config.generator.config).to(device)
parameter_dict = torch.load(RESUME_PATH, map_location="cpu")
codec_model.load_state_dict(parameter_dict["codec_model"])
codec_model.eval()

# Precompile regex for splitting lyrics
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL)

# ----------------------- Utility Functions -----------------------
def load_audio_mono(filepath, sampling_rate=16000):
    audio, sr = torchaudio.load(filepath)
    audio = audio.mean(dim=0, keepdim=True)  # convert to mono
    if sr != sampling_rate:
        resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
        audio = resampler(audio)
    return audio

def split_lyrics(lyrics: str):
    segments = LYRICS_PATTERN.findall(lyrics)
    return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments]

class BlockTokenRangeProcessor(LogitsProcessor):
    def __init__(self, start_id, end_id):
        self.blocked_token_ids = list(range(start_id, end_id))
    def __call__(self, input_ids, scores):
        scores[:, self.blocked_token_ids] = -float("inf")
        return scores

def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
    os.makedirs(os.path.dirname(path), exist_ok=True)
    limit = 0.99
    max_val = wav.abs().max().item()
    if rescale and max_val > 0:
        wav = wav * (limit / max_val)
    else:
        wav = wav.clamp(-limit, limit)
    torchaudio.save(path, wav, sample_rate=sample_rate, encoding="PCM_S", bits_per_sample=16)

# ----------------------- Stage2 Functions -----------------------
def stage2_generate(model_stage2, prompt, batch_size=16):
    """
    Given a prompt (a numpy array of raw codec ids), upsample using the Stage2 model.
    """
    # Unflatten prompt: assume prompt shape (1, T) and then reformat.
    codec_ids = codectool.unflatten(prompt, n_quantizer=1)
    codec_ids = codectool.offset_tok_ids(
        codec_ids,
        global_offset=codectool.global_offset,
        codebook_size=codectool.codebook_size,
        num_codebooks=codectool.num_codebooks,
    ).astype(np.int32)

    # Build new prompt tokens for Stage2:
    if batch_size > 1:
        codec_list = []
        for i in range(batch_size):
            idx_begin = i * 300
            idx_end = (i + 1) * 300
            codec_list.append(codec_ids[:, idx_begin:idx_end])
        codec_ids_concat = np.concatenate(codec_list, axis=0)
        prompt_ids = np.concatenate(
            [
                np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
                codec_ids_concat,
                np.tile([mmtokenizer.stage_2], (batch_size, 1)),
            ],
            axis=1,
        )
    else:
        prompt_ids = np.concatenate(
            [
                np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
                codec_ids.flatten(),
                np.array([mmtokenizer.stage_2]),
            ]
        ).astype(np.int32)
        prompt_ids = prompt_ids[np.newaxis, ...]

    codec_ids_tensor = torch.as_tensor(codec_ids).to(device)
    prompt_ids_tensor = torch.as_tensor(prompt_ids).to(device)
    len_prompt = prompt_ids_tensor.shape[-1]

    block_list = LogitsProcessorList([
        BlockTokenRangeProcessor(0, 46358),
        BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)
    ])

    # Teacher forcing generate loop: generate tokens in fixed 7-token steps per frame.
    for frames_idx in range(codec_ids_tensor.shape[1]):
        cb0 = codec_ids_tensor[:, frames_idx:frames_idx+1]
        prompt_ids_tensor = torch.cat([prompt_ids_tensor, cb0], dim=1)
        with torch.no_grad():
            stage2_output = model_stage2.generate(
                input_ids=prompt_ids_tensor,
                min_new_tokens=7,
                max_new_tokens=7,
                eos_token_id=mmtokenizer.eoa,
                pad_token_id=mmtokenizer.eoa,
                logits_processor=block_list,
            )
        # Ensure exactly 7 new tokens were added.
        assert stage2_output.shape[1] - prompt_ids_tensor.shape[1] == 7, (
            f"output new tokens={stage2_output.shape[1]-prompt_ids_tensor.shape[1]}"
        )
        prompt_ids_tensor = stage2_output

    # Return new tokens (excluding prompt)
    if batch_size > 1:
        output = prompt_ids_tensor.cpu().numpy()[:, len_prompt:]
        # If desired, reshape/split per batch element
        output_list = [output[i] for i in range(batch_size)]
        output = np.concatenate(output_list, axis=0)
    else:
        output = prompt_ids_tensor[0].cpu().numpy()[len_prompt:]
    return output

def stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=4):
    stage2_result = []
    for path in tqdm(stage1_output_set, desc="Stage2 Inference"):
        output_filename = os.path.join(stage2_output_dir, os.path.basename(path))
        if os.path.exists(output_filename):
            print(f"{output_filename} already processed.")
            stage2_result.append(output_filename)
            continue
        prompt = np.load(path).astype(np.int32)
        # Only process multiples of 6 seconds; here 50 tokens per second.
        output_duration = (prompt.shape[-1] // 50) // 6 * 6
        num_batch = output_duration // 6
        if num_batch <= batch_size:
            output = stage2_generate(model_stage2, prompt[:, :output_duration*50], batch_size=num_batch)
        else:
            segments = []
            num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
            for seg in range(num_segments):
                start_idx = seg * batch_size * 300
                end_idx = min((seg + 1) * batch_size * 300, output_duration * 50)
                current_batch = batch_size if (seg != num_segments - 1 or num_batch % batch_size == 0) else num_batch % batch_size
                segment = stage2_generate(model_stage2, prompt[:, start_idx:end_idx], batch_size=current_batch)
                segments.append(segment)
            output = np.concatenate(segments, axis=0)
        # Process any remaining tokens if prompt length not fully used.
        if output_duration * 50 != prompt.shape[-1]:
            ending = stage2_generate(model_stage2, prompt[:, output_duration * 50:], batch_size=1)
            output = np.concatenate([output, ending], axis=0)
        # Convert Stage2 output tokens back to numpy array using stage2’s codec manipulator.
        output = codectool_stage2.ids2npy(output)
        # Fix any invalid codes (if needed)
        fixed_output = copy.deepcopy(output)
        for i, line in enumerate(output):
            for j, element in enumerate(line):
                if element < 0 or element > 1023:
                    counter = Counter(line)
                    most_common = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
                    fixed_output[i, j] = most_common
        np.save(output_filename, fixed_output)
        stage2_result.append(output_filename)
    return stage2_result

# ----------------------- Main Generation Function (Stage1 + Stage2) -----------------------
@spaces.GPU(duration=120)
def generate_music(
    genre_txt="",
    lyrics_txt="",
    max_new_tokens=5,
    run_n_segments=2,
    use_audio_prompt=False,
    audio_prompt_path="",
    prompt_start_time=0.0,
    prompt_end_time=30.0,
    rescale=False,
):
    # Scale max_new_tokens (e.g. seconds * 100 tokens per second)
    max_new_tokens_scaled = max_new_tokens * 100

    # Use a temporary directory to store intermediate stage outputs.
    with tempfile.TemporaryDirectory() as tmp_dir:
        stage1_output_dir = os.path.join(tmp_dir, "stage1")
        stage2_output_dir = os.path.join(tmp_dir, "stage2")
        os.makedirs(stage1_output_dir, exist_ok=True)
        os.makedirs(stage2_output_dir, exist_ok=True)

        # ---------------- Stage 1: Text-to-Music Generation ----------------
        genres = genre_txt.strip()
        lyrics_segments = split_lyrics(lyrics_txt + "\n")
        full_lyrics = "\n".join(lyrics_segments)
        prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
        prompt_texts += lyrics_segments

        random_id = uuid.uuid4()
        raw_output = None

        # Decoding config
        top_p = 0.93
        temperature = 1.0
        repetition_penalty = 1.2

        # Pre-tokenize special tokens
        start_of_segment = mmtokenizer.tokenize("[start_of_segment]")
        end_of_segment = mmtokenizer.tokenize("[end_of_segment]")
        soa_token = mmtokenizer.soa
        eoa_token = mmtokenizer.eoa

        global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
        run_n = min(run_n_segments + 1, len(prompt_texts))
        for i, p in enumerate(tqdm(prompt_texts[:run_n], desc="Stage1 Generation")):
            section_text = p.replace("[start_of_segment]", "").replace("[end_of_segment]", "")
            guidance_scale = 1.5 if i <= 1 else 1.2
            if i == 0:
                continue
            if i == 1:
                if use_audio_prompt:
                    audio_prompt = load_audio_mono(audio_prompt_path)
                    audio_prompt = audio_prompt.unsqueeze(0)
                    with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
                        raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
                    raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
                    code_ids = codectool.npy2ids(raw_codes[0])
                    audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
                    audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token]
                    sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
                    head_id = global_prompt_ids + sentence_ids
                else:
                    head_id = global_prompt_ids
                prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids
            else:
                prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids

            prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0)
            if raw_output is not None:
                input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1)
            else:
                input_ids = prompt_ids_tensor

            max_context = 16384 - max_new_tokens_scaled - 1
            if input_ids.shape[-1] > max_context:
                input_ids = input_ids[:, -max_context:]
            with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
                output_seq = model.generate(
                    input_ids=input_ids,
                    max_new_tokens=max_new_tokens_scaled,
                    min_new_tokens=100,
                    do_sample=True,
                    top_p=top_p,
                    temperature=temperature,
                    repetition_penalty=repetition_penalty,
                    eos_token_id=eoa_token,
                    pad_token_id=eoa_token,
                    logits_processor=LogitsProcessorList([
                        BlockTokenRangeProcessor(0, 32002),
                        BlockTokenRangeProcessor(32016, 32016)
                    ]),
                    guidance_scale=guidance_scale,
                    use_cache=True,
                )
                if output_seq[0, -1].item() != eoa_token:
                    tensor_eoa = torch.as_tensor([[eoa_token]], device=device)
                    output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
            if raw_output is not None:
                new_tokens = output_seq[:, input_ids.shape[-1]:]
                raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1)
            else:
                raw_output = output_seq

        # Save Stage1 outputs (vocal & instrumental) as npy files.
        ids = raw_output[0].cpu().numpy()
        soa_idx = np.where(ids == soa_token)[0]
        eoa_idx = np.where(ids == eoa_token)[0]
        if len(soa_idx) != len(eoa_idx):
            raise ValueError(f"invalid pairs of soa and eoa: {len(soa_idx)} vs {len(eoa_idx)}")
        vocals_list = []
        instrumentals_list = []
        range_begin = 1 if use_audio_prompt else 0
        for i in range(range_begin, len(soa_idx)):
            codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
            if codec_ids[0] == 32016:
                codec_ids = codec_ids[1:]
            codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
            reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
            vocals_list.append(codectool.ids2npy(reshaped[0]))
            instrumentals_list.append(codectool.ids2npy(reshaped[1]))
        vocals = np.concatenate(vocals_list, axis=1)
        instrumentals = np.concatenate(instrumentals_list, axis=1)
        vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy")
        inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy")
        np.save(vocal_save_path, vocals)
        np.save(inst_save_path, instrumentals)
        stage1_output_set = [vocal_save_path, inst_save_path]

        # (Optional) Offload Stage1 model from GPU to free memory.
        model.cpu()
        torch.cuda.empty_cache()

        # ---------------- Stage 2: Refinement/Upsampling ----------------
        print("Stage 2 inference...")
        
        stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=STAGE2_BATCH_SIZE)
        print("Stage 2 inference completed.")

        # ---------------- Reconstruct Audio from Stage2 Tokens ----------------
        recons_output_dir = os.path.join(tmp_dir, "recons")
        recons_mix_dir = os.path.join(recons_output_dir, "mix")
        os.makedirs(recons_mix_dir, exist_ok=True)
        tracks = []
        for npy in stage2_result:
            codec_result = np.load(npy)
            with torch.inference_mode():
                input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)
                decoded_waveform = codec_model.decode(input_tensor)
            decoded_waveform = decoded_waveform.cpu().squeeze(0)
            save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
            tracks.append(save_path)
            save_audio(decoded_waveform, save_path, 16000, rescale)
        # Mix vocal and instrumental tracks:
        mix_audio = None
        vocal_audio = None
        instrumental_audio = None
        for inst_path in tracks:
            try:
                if (inst_path.endswith(".wav") or inst_path.endswith(".mp3")) and "instrumental" in inst_path:
                    vocal_path = inst_path.replace("instrumental", "vocal")
                    if not os.path.exists(vocal_path):
                        continue
                    vocal_data, sr = sf.read(vocal_path)
                    instrumental_data, _ = sf.read(inst_path)
                    mix_data = (vocal_data + instrumental_data) / 1.0
                    recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace("instrumental", "mixed"))
                    sf.write(recons_mix, mix_data, sr)
                    mix_audio = (sr, (mix_data * 32767).astype(np.int16))
                    vocal_audio = (sr, (vocal_data * 32767).astype(np.int16))
                    instrumental_audio = (sr, (instrumental_data * 32767).astype(np.int16))
            except Exception as e:
                print("Mixing error:", e)
                return None, None, None

        # ---------------- Vocoder Upsampling and Post Processing ----------------
        print("Vocoder upsampling...")
        vocal_decoder, inst_decoder = build_codec_model(VOCODER_CONFIG_PATH, VOCAL_DECODER_PATH, INST_DECODER_PATH)
        vocoder_output_dir = os.path.join(tmp_dir, "vocoder")
        vocoder_stems_dir = os.path.join(vocoder_output_dir, "stems")
        vocoder_mix_dir = os.path.join(vocoder_output_dir, "mix")
        os.makedirs(vocoder_stems_dir, exist_ok=True)
        os.makedirs(vocoder_mix_dir, exist_ok=True)
        # Process each track with the vocoder (here we process vocal and instrumental separately)
        if vocal_audio is not None and instrumental_audio is not None:
            vocal_output = process_audio(
                stage2_result[0],
                os.path.join(vocoder_stems_dir, "vocal.mp3"),
                rescale,
                None,
                vocal_decoder,
                codec_model,
            )
            instrumental_output = process_audio(
                stage2_result[1],
                os.path.join(vocoder_stems_dir, "instrumental.mp3"),
                rescale,
                None,
                inst_decoder,
                codec_model,
            )
            try:
                mix_output = instrumental_output + vocal_output
                vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
                save_audio(mix_output, vocoder_mix, 44100, rescale)
                print(f"Created vocoder mix: {vocoder_mix}")
            except RuntimeError as e:
                print(e)
                print("Mixing vocoder outputs failed!")
        else:
            print("Missing vocal/instrumental outputs for vocoder stage.")

        # Post-process: Replace low frequency of Stage1 reconstruction with energy-matched vocoder mix.
        final_mix_path = os.path.join(tmp_dir, "final_mix.mp3")
        try:
            replace_low_freq_with_energy_matched(
                a_file=recons_mix,      # Stage1 mix at 16kHz
                b_file=vocoder_mix,      # Vocoder mix at 48kHz
                c_file=final_mix_path,
                cutoff_freq=5500.0
            )
        except Exception as e:
            print("Post processing error:", e)
            final_mix_path = recons_mix  # Fall back to Stage1 mix

        # Return final outputs as tuples: (sample_rate, np.int16 audio)
        final_audio, vocal_audio, instrumental_audio = None, None, None
        try:
            final_audio_data, sr = sf.read(final_mix_path)
            final_audio = (sr, (final_audio_data * 32767).astype(np.int16))
        except Exception as e:
            print("Final mix read error:", e)
        return final_audio, vocal_audio, instrumental_audio

# ----------------------- Gradio Interface -----------------------
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# YuE: Full-Song Generation (Stage1 + Stage2)")
        gr.HTML(
            """
            <div style="display:flex; column-gap:4px;">
              <a href="https://github.com/multimodal-art-projection/YuE"><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a>
              <a href="https://map-yue.github.io"><img src='https://img.shields.io/badge/Project-Page-green'></a>
            </div>
            """
        )
        with gr.Row():
            with gr.Column():
                genre_txt = gr.Textbox(label="Genre", placeholder="e.g. Bass Metalcore Thrash Metal Furious bright vocal male")
                lyrics_txt = gr.Textbox(label="Lyrics", placeholder="Paste lyrics with segments such as [verse], [chorus], etc.")
            with gr.Column():
                num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
                max_new_tokens = gr.Slider(label="Duration of song (sec)", minimum=1, maximum=30, step=1, value=15, interactive=True)
                use_audio_prompt = gr.Checkbox(label="Use Audio Prompt", value=False)
                audio_prompt_path = gr.Textbox(label="Audio Prompt Filepath (if used)", placeholder="Path to audio file")
                submit_btn = gr.Button("Submit")
                music_out = gr.Audio(label="Mixed Audio Result")
                with gr.Accordion(label="Vocal and Instrumental Results", open=False):
                    vocal_out = gr.Audio(label="Vocal Audio")
                    instrumental_out = gr.Audio(label="Instrumental Audio")
        gr.Examples(
            examples=[
                [
                    "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
                    """[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.

[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
                    """
                ],
                [
                    "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
                    """[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands

[chorus]
This is my life, and I'mma keep it real
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
                    """
                ]
            ],
            inputs=[genre_txt, lyrics_txt],
            outputs=[music_out, vocal_out, instrumental_out],
            cache_examples=True,
            cache_mode="eager",
            fn=generate_music
        )
    submit_btn.click(
        fn=generate_music,
        inputs=[genre_txt, lyrics_txt, max_new_tokens, num_segments, use_audio_prompt, audio_prompt_path],
        outputs=[music_out, vocal_out, instrumental_out]
    )
    gr.Markdown("## Contributions Welcome\nFeel free to contribute improvements or fixes.")

demo.queue().launch(show_error=True)