File size: 27,727 Bytes
6c02161 b2d8a8c 15059e3 6df3b9e 60eb847 ac7355c 51043fd 5e9d470 ac7355c b2d8a8c ac7355c 6b78ccb 2936f7d 6b78ccb 98d025d ac7355c 15059e3 ac7355c c022c1a 472d32d c022c1a 9df60ba c022c1a 15059e3 5e9d470 c022c1a 9df60ba 5e9d470 472d32d 22e7225 ac7355c 5e9d470 ac7355c 44d4a2f ac7355c 6b78ccb 01bd804 649509e ac7355c dbb603e 01bd804 ac7355c 649509e ac7355c 2936f7d 0d14459 a96918a d21cf89 fa7e403 a96918a ac7355c a96918a ac7355c 5e9d470 ac7355c 5e9d470 ac7355c 858dd79 ac7355c 5e9d470 310cc12 ac7355c 7d83b5a ac7355c ba1f3a6 ac7355c ba1f3a6 ac7355c 7d83b5a ac7355c 7d83b5a c26a9f5 7d83b5a c26a9f5 ac7355c 7d83b5a ac7355c 7d83b5a ac7355c 7d83b5a ac7355c 7d83b5a ac7355c 7d83b5a ac7355c 7d83b5a c26a9f5 ac7355c 7d83b5a ac7355c 534de89 a96918a ac7355c b6479c7 5e9d470 a96918a 06ded55 e6c9d72 ac7355c 44d4a2f ac7355c 44d4a2f ac7355c 5e9d470 44d4a2f 5e9d470 44d4a2f 5e9d470 ac7355c 44d4a2f 5e9d470 ac7355c 5e9d470 ac7355c 44d4a2f 5e9d470 44d4a2f 5e9d470 44d4a2f 5e9d470 44d4a2f 5e9d470 44d4a2f 5e9d470 44d4a2f ac7355c 44d4a2f 5e9d470 44d4a2f ac7355c 44d4a2f 5e9d470 44d4a2f ac7355c 44d4a2f 5e9d470 44d4a2f 5e9d470 b1201e2 44d4a2f ac7355c 44d4a2f 5e9d470 44d4a2f ac7355c 5e9d470 ac7355c 44d4a2f 5e9d470 44d4a2f 5e9d470 44d4a2f ac7355c d21cf89 ac7355c 5e9d470 44d4a2f 24d1064 ac7355c 5e9d470 44d4a2f ac7355c 24d1064 ac7355c 24d1064 310cc12 ac7355c 310cc12 ac7355c 310cc12 5e9d470 24d1064 310cc12 ac7355c 649509e ac7355c 5e9d470 ac7355c 5e9d470 649509e ac7355c 649509e b6479c7 ac7355c 649509e 24d1064 ac7355c 24d1064 649509e 15059e3 649509e 3fe10eb 649509e fd82b48 649509e 8cd422c 5e9d470 8cd422c 649509e 15059e3 85b4489 15059e3 5730add ac7355c 649509e 725074b ac7355c 4c3deb1 85b4489 725074b ac7355c 5e9d470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
import gradio as gr
import subprocess
import os
import spaces
import sys
import shutil
import tempfile
import uuid
import re
import time
import copy
from collections import Counter
from tqdm import tqdm
from einops import rearrange
import numpy as np
import json
import torch
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
# --- Install flash-attn (if needed) ---
print("Installing flash-attn...")
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True
)
# --- Download and set up stage1 files ---
from huggingface_hub import snapshot_download
folder_path = "./xcodec_mini_infer"
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir=folder_path
)
# Change working directory to current folder
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
# --- Append required module paths ---
base_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(base_path, "xcodec_mini_infer"))
sys.path.append(os.path.join(base_path, "xcodec_mini_infer", "descriptaudiocodec"))
# --- Additional imports (vocoder & post processing) ---
from omegaconf import OmegaConf
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
from models.soundstream_hubert_new import SoundStream
# Import vocoder functions (ensure these modules exist)
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
# ----------------------- Global Configuration -----------------------
# Stage1 and Stage2 model identifiers (change if needed)
STAGE1_MODEL = "m-a-p/YuE-s1-7B-anneal-en-cot"
STAGE2_MODEL = "m-a-p/YuE-s2-1B-general"
# Vocoder model files (paths in the xcodec snapshot)
BASIC_MODEL_CONFIG = os.path.join(folder_path, "final_ckpt/config.yaml")
RESUME_PATH = os.path.join(folder_path, "final_ckpt/ckpt_00360000.pth")
VOCAL_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_131000.pth")
INST_DECODER_PATH = os.path.join(folder_path, "decoders/decoder_151000.pth")
VOCODER_CONFIG_PATH = os.path.join(folder_path, "decoders/config.yaml")
# Misc settings
MAX_NEW_TOKENS = 15 # Duration slider (in seconds, scaled internally)
RUN_N_SEGMENTS = 2 # Number of segments to generate
STAGE2_BATCH_SIZE = 4 # Batch size for stage2 inference
# You may change these defaults via Gradio input (see below)
# ----------------------- Device Setup -----------------------
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# ----------------------- Load Stage1 Models and Tokenizer -----------------------
print("Loading Stage 1 model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(
STAGE1_MODEL,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device)
model.eval()
model_stage2 = AutoModelForCausalLM.from_pretrained(
STAGE2_MODEL,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device)
model_stage2.eval()
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
# Two separate codec manipulators: one for Stage1 and one for Stage2 (with a higher number of quantizers)
codectool = CodecManipulator("xcodec", 0, 1)
codectool_stage2 = CodecManipulator("xcodec", 0, 8)
# Load codec (xcodec) model for Stage1 & Stage2 decoding
model_config = OmegaConf.load(BASIC_MODEL_CONFIG)
codec_class = eval(model_config.generator.name)
codec_model = codec_class(**model_config.generator.config).to(device)
parameter_dict = torch.load(RESUME_PATH, map_location="cpu")
codec_model.load_state_dict(parameter_dict["codec_model"])
codec_model.eval()
# Precompile regex for splitting lyrics
LYRICS_PATTERN = re.compile(r"\[(\w+)\](.*?)\n(?=\[|\Z)", re.DOTALL)
# ----------------------- Utility Functions -----------------------
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
audio = audio.mean(dim=0, keepdim=True) # convert to mono
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
segments = LYRICS_PATTERN.findall(lyrics)
return [f"[{tag}]\n{text.strip()}\n\n" for tag, text in segments]
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
os.makedirs(os.path.dirname(path), exist_ok=True)
limit = 0.99
max_val = wav.abs().max().item()
if rescale and max_val > 0:
wav = wav * (limit / max_val)
else:
wav = wav.clamp(-limit, limit)
torchaudio.save(path, wav, sample_rate=sample_rate, encoding="PCM_S", bits_per_sample=16)
# ----------------------- Stage2 Functions -----------------------
def stage2_generate(model_stage2, prompt, batch_size=16):
"""
Given a prompt (a numpy array of raw codec ids), upsample using the Stage2 model.
"""
# Unflatten prompt: assume prompt shape (1, T) and then reformat.
print(f"stage2_generate: received prompt with shape: {prompt.shape}")
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
codec_ids = codectool.offset_tok_ids(
codec_ids,
global_offset=codectool.global_offset,
codebook_size=codectool.codebook_size,
num_codebooks=codectool.num_codebooks,
).astype(np.int32)
# Build new prompt tokens for Stage2:
if batch_size > 1:
codec_list = []
for i in range(batch_size):
idx_begin = i * 300
idx_end = (i + 1) * 300
codec_list.append(codec_ids[:, idx_begin:idx_end])
codec_ids_concat = np.concatenate(codec_list, axis=0)
prompt_ids = np.concatenate(
[
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
codec_ids_concat,
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
],
axis=1,
)
else:
prompt_ids = np.concatenate(
[
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
codec_ids.flatten(),
np.array([mmtokenizer.stage_2]),
]
).astype(np.int32)
prompt_ids = prompt_ids[np.newaxis, ...]
codec_ids_tensor = torch.as_tensor(codec_ids).to(device)
prompt_ids_tensor = torch.as_tensor(prompt_ids).to(device)
len_prompt = prompt_ids_tensor.shape[-1]
block_list = LogitsProcessorList([
BlockTokenRangeProcessor(0, 46358),
BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)
])
# Teacher forcing generate loop: generate tokens in fixed 7-token steps per frame.
for frames_idx in range(codec_ids_tensor.shape[1]):
cb0 = codec_ids_tensor[:, frames_idx:frames_idx+1]
prompt_ids_tensor = torch.cat([prompt_ids_tensor, cb0], dim=1)
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
stage2_output = model_stage2.generate(
input_ids=prompt_ids_tensor,
min_new_tokens=7,
max_new_tokens=7,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=block_list,
use_cache=True
)
# Ensure exactly 7 new tokens were added.
assert stage2_output.shape[1] - prompt_ids_tensor.shape[1] == 7, (
f"output new tokens={stage2_output.shape[1]-prompt_ids_tensor.shape[1]}"
)
prompt_ids_tensor = stage2_output
# Return new tokens (excluding prompt)
if batch_size > 1:
output = prompt_ids_tensor.cpu().numpy()[:, len_prompt:]
# If desired, reshape/split per batch element
output_list = [output[i] for i in range(batch_size)]
output = np.concatenate(output_list, axis=0)
else:
output = prompt_ids_tensor[0].cpu().numpy()[len_prompt:]
return output
def stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=4):
stage2_result = []
for path in tqdm(stage1_output_set, desc="Stage2 Inference"):
output_filename = os.path.join(stage2_output_dir, os.path.basename(path))
if os.path.exists(output_filename):
print(f"{output_filename} already processed.")
stage2_result.append(output_filename)
continue
prompt = np.load(path).astype(np.int32)
# Ensure prompt is 2D.
if prompt.ndim == 1:
prompt = prompt[np.newaxis, :]
print(f"Loaded prompt from {path} with shape: {prompt.shape}")
# Compute total duration in seconds (assuming 50 tokens per second)
total_duration_sec = prompt.shape[-1] // 50
if total_duration_sec < 6:
# Not enough tokens for a full 6-sec segment; use the entire prompt.
output_duration = total_duration_sec
print(f"Prompt too short for 6-sec segmentation. Using full duration: {output_duration} seconds.")
else:
output_duration = (total_duration_sec // 6) * 6
# If after the above, output_duration is still zero, raise an error.
if output_duration == 0:
raise ValueError(f"Output duration computed as 0 for {path}. Prompt length: {prompt.shape[-1]} tokens")
num_batch = output_duration // 6
# Process prompt in batches
if num_batch <= batch_size:
output = stage2_generate(model_stage2, prompt[:, :output_duration*50], batch_size=num_batch)
else:
segments = []
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
for seg in range(num_segments):
start_idx = seg * batch_size * 300
end_idx = min((seg + 1) * batch_size * 300, output_duration * 50)
current_batch = batch_size if (seg != num_segments - 1 or num_batch % batch_size == 0) else num_batch % batch_size
segment_prompt = prompt[:, start_idx:end_idx]
if segment_prompt.shape[-1] == 0:
print(f"Warning: empty segment detected for seg {seg}, start {start_idx}, end {end_idx}. Skipping this segment.")
continue
segment = stage2_generate(model_stage2, segment_prompt, batch_size=current_batch)
segments.append(segment)
if len(segments) == 0:
raise ValueError(f"No valid segments produced for {path}.")
output = np.concatenate(segments, axis=0)
# Process any remaining tokens if prompt length not fully used.
if output_duration * 50 != prompt.shape[-1]:
ending = stage2_generate(model_stage2, prompt[:, output_duration * 50:], batch_size=1)
output = np.concatenate([output, ending], axis=0)
# Convert Stage2 output tokens back to numpy using Stage2’s codec manipulator.
output = codectool_stage2.ids2npy(output)
# Fix any invalid codes (if needed)
fixed_output = copy.deepcopy(output)
for i, line in enumerate(output):
for j, element in enumerate(line):
if element < 0 or element > 1023:
counter = Counter(line)
most_common = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
fixed_output[i, j] = most_common
np.save(output_filename, fixed_output)
stage2_result.append(output_filename)
return stage2_result
# ----------------------- Main Generation Function (Stage1 + Stage2) -----------------------
@spaces.GPU(duration=175)
def generate_music(
genre_txt="",
lyrics_txt="",
max_new_tokens=2,
run_n_segments=1,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
rescale=False,
):
# Scale max_new_tokens (e.g. seconds * 50 tokens per second)
max_new_tokens_scaled = max_new_tokens * 50
# Use a temporary directory to store intermediate stage outputs.
with tempfile.TemporaryDirectory() as tmp_dir:
stage1_output_dir = os.path.join(tmp_dir, "stage1")
stage2_output_dir = os.path.join(tmp_dir, "stage2")
os.makedirs(stage1_output_dir, exist_ok=True)
os.makedirs(stage2_output_dir, exist_ok=True)
# ---------------- Stage 1: Text-to-Music Generation ----------------
genres = genre_txt.strip()
lyrics_segments = split_lyrics(lyrics_txt + "\n")
full_lyrics = "\n".join(lyrics_segments)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics_segments
random_id = uuid.uuid4()
raw_output = None
# Decoding config
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
# Pre-tokenize special tokens
start_of_segment = mmtokenizer.tokenize("[start_of_segment]")
end_of_segment = mmtokenizer.tokenize("[end_of_segment]")
soa_token = mmtokenizer.soa
eoa_token = mmtokenizer.eoa
global_prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
run_n = min(run_n_segments + 1, len(prompt_texts))
for i, p in enumerate(tqdm(prompt_texts[:run_n], desc="Stage1 Generation")):
section_text = p.replace("[start_of_segment]", "").replace("[end_of_segment]", "")
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 0:
continue
if i == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt = audio_prompt.unsqueeze(0)
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)]
audio_prompt_codec_ids = [soa_token] + codectool.sep_ids + audio_prompt_codec + [eoa_token]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = global_prompt_ids + sentence_ids
else:
head_id = global_prompt_ids
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [soa_token] + codectool.sep_ids
prompt_ids_tensor = torch.as_tensor(prompt_ids, device=device).unsqueeze(0)
if raw_output is not None:
input_ids = torch.cat([raw_output, prompt_ids_tensor], dim=1)
else:
input_ids = prompt_ids_tensor
max_context = 16384 - max_new_tokens_scaled - 1
if input_ids.shape[-1] > max_context:
input_ids = input_ids[:, -max_context:]
with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.float16):
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens_scaled,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=eoa_token,
pad_token_id=eoa_token,
logits_processor=LogitsProcessorList([
BlockTokenRangeProcessor(0, 32002),
BlockTokenRangeProcessor(32016, 32016)
]),
guidance_scale=guidance_scale,
use_cache=True,
)
if output_seq[0, -1].item() != eoa_token:
tensor_eoa = torch.as_tensor([[eoa_token]], device=device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if raw_output is not None:
new_tokens = output_seq[:, input_ids.shape[-1]:]
raw_output = torch.cat([raw_output, prompt_ids_tensor, new_tokens], dim=1)
else:
raw_output = output_seq
# Save Stage1 outputs (vocal & instrumental) as npy files.
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == soa_token)[0]
eoa_idx = np.where(ids == eoa_token)[0]
if len(soa_idx) != len(eoa_idx):
raise ValueError(f"invalid pairs of soa and eoa: {len(soa_idx)} vs {len(eoa_idx)}")
vocals_list = []
instrumentals_list = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
reshaped = rearrange(codec_ids, "(n b) -> b n", b=2)
vocals_list.append(codectool.ids2npy(reshaped[0]))
instrumentals_list.append(codectool.ids2npy(reshaped[1]))
vocals = np.concatenate(vocals_list, axis=1)
instrumentals = np.concatenate(instrumentals_list, axis=1)
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{str(random_id).replace('.', '@')}.npy")
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{str(random_id).replace('.', '@')}.npy")
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set = [vocal_save_path, inst_save_path]
# (Optional) Offload Stage1 model from GPU to free memory.
model.cpu()
torch.cuda.empty_cache()
# ---------------- Stage 2: Refinement/Upsampling ----------------
print("Stage 2 inference...")
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=STAGE2_BATCH_SIZE)
print("Stage 2 inference completed.")
# ---------------- Reconstruct Audio from Stage2 Tokens ----------------
recons_output_dir = os.path.join(tmp_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, "mix")
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage2_result:
codec_result = np.load(npy)
with torch.inference_mode():
input_tensor = torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)
decoded_waveform = codec_model.decode(input_tensor)
decoded_waveform = decoded_waveform.cpu().squeeze(0)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decoded_waveform, save_path, 16000, rescale)
# Mix vocal and instrumental tracks:
mix_audio = None
vocal_audio = None
instrumental_audio = None
for inst_path in tracks:
try:
if (inst_path.endswith(".wav") or inst_path.endswith(".mp3")) and "instrumental" in inst_path:
vocal_path = inst_path.replace("instrumental", "vocal")
if not os.path.exists(vocal_path):
continue
vocal_data, sr = sf.read(vocal_path)
instrumental_data, _ = sf.read(inst_path)
mix_data = (vocal_data + instrumental_data) / 1.0
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace("instrumental", "mixed"))
sf.write(recons_mix, mix_data, sr)
mix_audio = (sr, (mix_data * 32767).astype(np.int16))
vocal_audio = (sr, (vocal_data * 32767).astype(np.int16))
instrumental_audio = (sr, (instrumental_data * 32767).astype(np.int16))
except Exception as e:
print("Mixing error:", e)
return None, None, None
# ---------------- Vocoder Upsampling and Post Processing ----------------
print("Vocoder upsampling...")
vocal_decoder, inst_decoder = build_codec_model(VOCODER_CONFIG_PATH, VOCAL_DECODER_PATH, INST_DECODER_PATH)
vocoder_output_dir = os.path.join(tmp_dir, "vocoder")
vocoder_stems_dir = os.path.join(vocoder_output_dir, "stems")
vocoder_mix_dir = os.path.join(vocoder_output_dir, "mix")
os.makedirs(vocoder_stems_dir, exist_ok=True)
os.makedirs(vocoder_mix_dir, exist_ok=True)
# Process each track with the vocoder (here we process vocal and instrumental separately)
if vocal_audio is not None and instrumental_audio is not None:
vocal_output = process_audio(
stage2_result[0],
os.path.join(vocoder_stems_dir, "vocal.mp3"),
rescale,
None,
vocal_decoder,
codec_model,
)
instrumental_output = process_audio(
stage2_result[1],
os.path.join(vocoder_stems_dir, "instrumental.mp3"),
rescale,
None,
inst_decoder,
codec_model,
)
try:
mix_output = instrumental_output + vocal_output
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
save_audio(mix_output, vocoder_mix, 44100, rescale)
print(f"Created vocoder mix: {vocoder_mix}")
except RuntimeError as e:
print(e)
print("Mixing vocoder outputs failed!")
else:
print("Missing vocal/instrumental outputs for vocoder stage.")
# Post-process: Replace low frequency of Stage1 reconstruction with energy-matched vocoder mix.
final_mix_path = os.path.join(tmp_dir, "final_mix.mp3")
try:
replace_low_freq_with_energy_matched(
a_file=recons_mix, # Stage1 mix at 16kHz
b_file=vocoder_mix, # Vocoder mix at 48kHz
c_file=final_mix_path,
cutoff_freq=5500.0
)
except Exception as e:
print("Post processing error:", e)
final_mix_path = recons_mix # Fall back to Stage1 mix
# Return final outputs as tuples: (sample_rate, np.int16 audio)
final_audio, vocal_audio, instrumental_audio = None, None, None
try:
final_audio_data, sr = sf.read(final_mix_path)
final_audio = (sr, (final_audio_data * 32767).astype(np.int16))
except Exception as e:
print("Final mix read error:", e)
return final_audio, vocal_audio, instrumental_audio
# ----------------------- Gradio Interface -----------------------
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Full-Song Generation (Stage1 + Stage2)")
gr.HTML(
"""
<div style="display:flex; column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE"><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a>
<a href="https://map-yue.github.io"><img src='https://img.shields.io/badge/Project-Page-green'></a>
</div>
"""
)
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre", placeholder="e.g. Bass Metalcore Thrash Metal Furious bright vocal male")
lyrics_txt = gr.Textbox(label="Lyrics", placeholder="Paste lyrics with segments such as [verse], [chorus], etc.")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song (sec)", minimum=1, maximum=30, step=1, value=15, interactive=True)
use_audio_prompt = gr.Checkbox(label="Use Audio Prompt", value=False)
audio_prompt_path = gr.Textbox(label="Audio Prompt Filepath (if used)", placeholder="Path to audio file")
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Mixed Audio Result")
with gr.Accordion(label="Vocal and Instrumental Results", open=False):
vocal_out = gr.Audio(label="Vocal Audio")
instrumental_out = gr.Audio(label="Instrumental Audio")
gr.Examples(
examples=[
[
"Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar",
"""[verse]
Step back cause I'll ignite
Won't quit without a fight
No escape, gear up, it's a fierce fight
Brace up, raise your hands up and light
Fear the might. Step back cause I'll ignite
Won't back down without a fight
It keeps going and going, the heat is on.
[chorus]
Hot flame. Hot flame.
Still here, still holding aim
I don't care if I'm bright or dim: nah.
I've made it clear, I'll make it again
All I want is my crew and my gain.
I'm feeling wild, got a bit of rebel style.
Locked inside my mind, hot flame.
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'mma keep it real
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out, vocal_out, instrumental_out],
cache_examples=True,
cache_mode="eager",
fn=generate_music
)
submit_btn.click(
fn=generate_music,
inputs=[genre_txt, lyrics_txt, max_new_tokens, num_segments, use_audio_prompt, audio_prompt_path],
outputs=[music_out, vocal_out, instrumental_out]
)
gr.Markdown("## Contributions Welcome\nFeel free to contribute improvements or fixes.")
demo.queue().launch(show_error=True)
|