File size: 25,116 Bytes
ad8946e 8efc195 ad8946e f0f70ca 981f52f ad8946e 981f52f ad8946e 8efc195 ad8946e 5565ca5 ad8946e 3cd2108 8efc195 7f69142 71c70ef 7f69142 5565ca5 71c70ef ad8946e 8efc195 ad8946e 981f52f ad8946e 5565ca5 ad8946e f0f70ca ad8946e 8efc195 ad8946e 7f69142 ad8946e f0f70ca ad8946e 5565ca5 9b4ede0 5565ca5 01f0185 8efc195 5565ca5 5fcde85 9b4ede0 5fcde85 ad8946e dec9aa7 5fcde85 5565ca5 5fcde85 5565ca5 5fcde85 5565ca5 5fcde85 9b4ede0 5fcde85 5565ca5 5fcde85 5565ca5 5fcde85 9b4ede0 dec9aa7 9b4ede0 5565ca5 ad8946e dec9aa7 ad8946e dec9aa7 5565ca5 dec9aa7 981f52f dec9aa7 ad8946e dec9aa7 981f52f dec9aa7 981f52f dec9aa7 981f52f 5565ca5 ad8946e 5565ca5 8efc195 d15f2d4 ad8946e 8efc195 ad8946e a30b6a4 ad8946e 981f52f ad8946e a30b6a4 0702c36 a30b6a4 ad8946e a30b6a4 ad8946e a30b6a4 ad8946e a30b6a4 ad8946e a30b6a4 ad8946e a30b6a4 7f69142 ad8946e 7f69142 5565ca5 0702c36 5565ca5 0702c36 981f52f 0702c36 7fb1650 7f69142 ad8946e 5565ca5 a30b6a4 ad8946e dec9aa7 981f52f 5565ca5 981f52f ad8946e 8efc195 5565ca5 dec9aa7 8efc195 dec9aa7 8efc195 dec9aa7 8efc195 dec9aa7 8efc195 981f52f 8efc195 981f52f 8efc195 981f52f dec9aa7 8efc195 7a942e5 ad8946e dec9aa7 981f52f 8efc195 dec9aa7 8efc195 dec9aa7 8efc195 dec9aa7 8efc195 dec9aa7 8efc195 981f52f 8efc195 981f52f 8efc195 dec9aa7 5565ca5 8efc195 5565ca5 dec9aa7 981f52f dec9aa7 981f52f dec9aa7 981f52f dec9aa7 981f52f 5565ca5 dec9aa7 ad8946e 5f8442e 5565ca5 ad8946e 8efc195 1848c43 5565ca5 8efc195 5565ca5 8efc195 1848c43 dec9aa7 ad8946e dec9aa7 981f52f ad8946e dec9aa7 981f52f ad8946e 1848c43 ad8946e 981f52f 1848c43 5565ca5 8efc195 ad8946e 80b48eb 5565ca5 80b48eb dec9aa7 80b48eb 5565ca5 dec9aa7 80b48eb 42597fe 981f52f 80b48eb 54b13e2 9b4ede0 54b13e2 dec9aa7 54b13e2 9b4ede0 b31f036 1848c43 dec9aa7 981f52f dec9aa7 981f52f dec9aa7 7f69142 dec9aa7 7f69142 b31f036 dec9aa7 5565ca5 2d26eaf 01f0185 2d26eaf 01f0185 dec9aa7 5565ca5 ad8946e 981f52f 5565ca5 981f52f dec9aa7 ad8946e e765d79 981f52f 54b13e2 b31f036 8efc195 981f52f ad8946e 3dee4f6 353d877 dec9aa7 981f52f ad8946e 9b4ede0 981f52f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import seaborn as sns
from facenet_pytorch import InceptionResnetV1, MTCNN
import mediapipe as mp
from fer import FER
from scipy import interpolate
from sklearn.cluster import DBSCAN, KMeans
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import silhouette_score
import umap
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
from moviepy.editor import VideoFileClip
from PIL import Image
import gradio as gr
import tempfile
import shutil
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.get_logger().setLevel('ERROR')
matplotlib.rcParams['figure.dpi'] = 400
matplotlib.rcParams['savefig.dpi'] = 400
# Initialize models and other global variables
device = 'cuda' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100,
selection_method='largest')
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
emotion_detector = FER(mtcnn=False)
def frame_to_timecode(frame_num, total_frames, duration):
total_seconds = (frame_num / total_frames) * duration
hours = int(total_seconds // 3600)
minutes = int((total_seconds % 3600) // 60)
seconds = int(total_seconds % 60)
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
def get_face_embedding_and_emotion(face_img):
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
face_tensor = (face_tensor - 0.5) / 0.5
face_tensor = face_tensor.to(device)
with torch.no_grad():
embedding = model(face_tensor)
emotions = emotion_detector.detect_emotions(face_img)
if emotions:
emotion_dict = emotions[0]['emotions']
else:
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']}
return embedding.cpu().numpy().flatten(), emotion_dict
def alignFace(img):
img_raw = img.copy()
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
landmarks = results.multi_face_landmarks[0].landmark
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
left_eye_center = left_eye.mean(axis=0).astype(np.int32)
right_eye_center = right_eye.mean(axis=0).astype(np.int32)
dY = right_eye_center[1] - left_eye_center[1]
dX = right_eye_center[0] - left_eye_center[0]
angle = np.degrees(np.arctan2(dY, dX))
desired_angle = 0
angle_diff = desired_angle - angle
height, width = img_raw.shape[:2]
center = (width // 2, height // 2)
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
return new_img
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
os.makedirs(output_folder, exist_ok=True)
clip = VideoFileClip(video_path)
original_fps = clip.fps
duration = clip.duration
total_frames = int(duration * original_fps)
step = max(1, original_fps / desired_fps)
total_frames_to_extract = int(total_frames / step)
frame_count = 0
for t in np.arange(0, duration, step / original_fps):
frame = clip.get_frame(t)
img = Image.fromarray(frame)
img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"))
frame_count += 1
if progress_callback:
progress = min(100, (frame_count / total_frames_to_extract) * 100)
progress_callback(progress, f"Extracting frame")
if frame_count >= total_frames_to_extract:
break
clip.close()
return frame_count, original_fps
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size):
embeddings_by_frame = {}
emotions_by_frame = {}
aligned_face_paths = []
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
for i in range(0, len(frame_files), batch_size):
batch_files = frame_files[i:i + batch_size]
batch_frames = []
batch_nums = []
for frame_file in batch_files:
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.imread(frame_path)
if frame is not None:
batch_frames.append(frame)
batch_nums.append(frame_num)
if batch_frames:
batch_boxes, batch_probs = mtcnn.detect(batch_frames)
for j, (frame, frame_num, boxes, probs) in enumerate(
zip(batch_frames, batch_nums, batch_boxes, batch_probs)):
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
face = frame[y1:y2, x1:x2]
if face.size > 0:
aligned_face = alignFace(face)
if aligned_face is not None:
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, aligned_face_resized)
aligned_face_paths.append(output_path)
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
embeddings_by_frame[frame_num] = embedding
emotions_by_frame[frame_num] = emotion
progress((i + len(batch_files)) / frame_count,
f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}")
return embeddings_by_frame, emotions_by_frame, aligned_face_paths
def cluster_faces(face_images):
if len(face_images) < 2:
print("Not enough faces for clustering. Assigning all to one cluster.")
return np.zeros(len(face_images), dtype=int)
# Resize all images to a consistent size
resized_faces = [cv2.resize(face, (224, 224)) for face in face_images]
# Convert images to grayscale and flatten
gray_faces = [cv2.cvtColor(face, cv2.COLOR_BGR2GRAY).flatten() for face in resized_faces]
# Stack the flattened images
X = np.stack(gray_faces)
# Normalize the pixel values
X = X / 255.0
# Perform DBSCAN clustering
dbscan = DBSCAN(eps=0.3, min_samples=3, metric='euclidean')
clusters = dbscan.fit_predict(X)
# If DBSCAN assigns all to noise (-1), consider it as one cluster
if np.all(clusters == -1):
print("DBSCAN assigned all to noise. Considering as one cluster.")
return np.zeros(len(face_images), dtype=int)
return clusters
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
os.makedirs(person_folder, exist_ok=True)
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
shutil.copy(src, dst)
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder,
num_components, video_duration):
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']
person_data = {}
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
emotions_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings, emotions_data = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
reducer = umap.UMAP(n_components=num_components, random_state=1)
embeddings_reduced = reducer.fit_transform(embeddings)
scaler = MinMaxScaler(feature_range=(0, 1))
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
total_frames = max(frames)
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Time (Minutes)': times_in_minutes,
'Embedding_Index': range(len(embeddings))
}
for i in range(num_components):
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
for emotion in emotions:
df_data[emotion] = [e[emotion] for e in emotions_data]
df = pd.DataFrame(df_data)
return df, largest_cluster
class LSTMAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size=64, num_layers=2):
super(LSTMAutoencoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
outputs, (hidden, _) = self.lstm(x)
out = self.fc(outputs)
return out
def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(X).to(device)
if X.dim() == 2:
X = X.unsqueeze(0)
elif X.dim() == 1:
X = X.unsqueeze(0).unsqueeze(2)
elif X.dim() > 3:
raise ValueError(f"Input X should be 1D, 2D or 3D, but got {X.dim()} dimensions")
print(f"X shape after reshaping: {X.shape}")
train_size = int(0.85 * X.shape[1])
X_train, X_val = X[:, :train_size, :], X[:, train_size:, :]
model = LSTMAutoencoder(input_size=X.shape[2]).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output_train = model(X_train)
loss_train = criterion(output_train, X_train.squeeze(0))
loss_train.backward()
optimizer.step()
model.eval()
with torch.no_grad():
output_val = model(X_val)
loss_val = criterion(output_val, X_val.squeeze(0))
model.eval()
with torch.no_grad():
reconstructed = model(X).squeeze(0).cpu().numpy()
mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
top_indices_all = mse_all.argsort()[-num_anomalies:][::-1]
anomalies_all = np.zeros(len(mse_all), dtype=bool)
anomalies_all[top_indices_all] = True
component_columns = [col for col in feature_columns if col.startswith('Comp')]
component_indices = [feature_columns.index(col) for col in component_columns]
if len(component_indices) > 0:
mse_comp = np.mean(
np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1)
else:
mse_comp = mse_all
top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1]
anomalies_comp = np.zeros(len(mse_comp), dtype=bool)
anomalies_comp[top_indices_comp] = True
return (anomalies_all, mse_all, top_indices_all,
anomalies_comp, mse_comp, top_indices_comp,
model)
def emotion_anomaly_detection(emotion_data, num_anomalies=10, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(emotion_data.values.reshape(-1, 1)).to(device)
X = X.unsqueeze(0) # Add batch dimension
model = LSTMAutoencoder(input_size=1).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(X)
loss = criterion(output, X)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
reconstructed = model(X).squeeze(0).cpu().numpy()
mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
top_indices = mse.argsort()[-num_anomalies:][::-1]
anomalies = np.zeros(len(mse), dtype=bool)
anomalies[top_indices] = True
return anomalies, mse, top_indices
def normalize_scores(scores):
min_score = np.min(scores)
max_score = np.max(scores)
if max_score == min_score:
return np.full_like(scores, 100)
return ((scores - min_score) / (max_score - min_score)) * 100
def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
plt.figure(figsize=(16, 8), dpi=400)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Normalize scores
normalized_scores = normalize_scores(anomaly_scores)
# Omit the first data point
seconds = df['Seconds'].values[1:]
scores = normalized_scores[1:]
# Create bar plot
ax.bar(seconds, scores, width=1, color='blue', alpha=0.7)
# Highlight top anomalies (excluding the first data point)
top_indices = [idx for idx in top_indices if idx > 0]
ax.bar(df['Seconds'].iloc[top_indices], normalized_scores[top_indices], width=1, color='red', alpha=0.7)
max_seconds = df['Seconds'].max()
ax.set_xlim(0, max_seconds)
num_ticks = 80
ax.set_xticks(np.linspace(0, max_seconds, num_ticks))
ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()],
rotation=90, ha='center', va='top')
ax.set_xlabel('Time')
ax.set_ylabel('Anomaly Score')
ax.set_title(f'Anomaly Scores ({title})')
ax.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
return fig
def plot_emotion(df, emotion, anomaly_scores, top_indices, num_anomalies, color):
plt.figure(figsize=(16, 8), dpi=400)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Omit the first data point
seconds = df['Seconds'].values[1:]
scores = anomaly_scores[1:]
# Create bar plot
ax.bar(seconds, scores, width=1, color=color, alpha=0.7)
# Highlight top anomalies (excluding the first data point)
top_indices = [idx for idx in top_indices if idx > 0]
ax.bar(df['Seconds'].iloc[top_indices], anomaly_scores[top_indices], width=1, color='red', alpha=0.7)
max_seconds = df['Seconds'].max()
ax.set_xlim(0, max_seconds)
num_ticks = 80
ax.set_xticks(np.linspace(0, max_seconds, num_ticks))
ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()],
rotation=90, ha='center', va='top')
ax.set_xlabel('Time')
ax.set_ylabel(f'{emotion.capitalize()} Anomaly Score')
ax.set_title(f'{emotion.capitalize()} Anomaly Scores (Top {num_anomalies} in Red)')
ax.grid(True, linestyle='--', alpha=0.7)
plt.tight_layout()
return fig
def get_random_face_samples(organized_faces_folder, output_folder):
face_samples = []
for cluster_folder in os.listdir(organized_faces_folder):
if cluster_folder.startswith("person_"):
person_folder = os.path.join(organized_faces_folder, cluster_folder)
face_files = [f for f in os.listdir(person_folder) if f.endswith('.jpg')]
if face_files:
random_face = np.random.choice(face_files)
face_path = os.path.join(person_folder, random_face)
output_path = os.path.join(output_folder, f"face_sample_{cluster_folder}.jpg")
face_img = cv2.imread(face_path)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, small_face)
face_samples.append(output_path)
return face_samples
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
with tempfile.TemporaryDirectory() as temp_dir:
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(aligned_faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
clip = VideoFileClip(video_path)
video_duration = clip.duration
clip.close()
progress(0, "Starting frame extraction")
frames_folder = os.path.join(temp_dir, 'extracted_frames')
def extraction_progress(percent, message):
progress(percent / 100, f"Extracting frames")
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
progress(1, "Frame extraction complete")
progress(0.3, "Processing frames")
embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder,
frame_count,
progress, batch_size)
if not aligned_face_paths:
return ("No faces were extracted from the video.",
None, None, None, None, None, None, None, None, None)
progress(0.6, "Clustering faces")
face_images = [cv2.imread(path) for path in aligned_face_paths]
clusters = cluster_faces(face_images)
num_clusters = len(set(clusters)) # Get the number of unique clusters
progress(0.7, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
progress(0.75, "Getting face samples")
face_samples = get_random_face_samples(organized_faces_folder, output_folder)
progress(0.8, "Saving person data")
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps,
original_fps, temp_dir, num_components, video_duration)
progress(0.9, "Performing anomaly detection")
feature_columns = [col for col in df.columns if
col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
X = df[feature_columns].values
try:
anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection(
X, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
# Normalize anomaly scores
anomaly_scores_all = normalize_scores(anomaly_scores_all)
anomaly_scores_comp = normalize_scores(anomaly_scores_comp)
# Perform anomaly detection for each emotion
emotion_anomalies = {}
for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']:
anomalies, scores, indices = emotion_anomaly_detection(df[emotion], num_anomalies=num_anomalies)
emotion_anomalies[emotion] = {
'anomalies': anomalies,
'scores': normalize_scores(scores),
'indices': indices
}
except Exception as e:
print(f"Error details: {str(e)}")
return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None, None, None, None
progress(0.95, "Generating plots")
try:
anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only")
emotion_plots = [
plot_emotion(df, emotion, emotion_anomalies[emotion]['scores'], emotion_anomalies[emotion]['indices'],
num_anomalies, color)
for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'],
['purple', 'green', 'orange', 'darkblue', 'gold', 'grey'])
]
except Exception as e:
return f"Error generating plots: {str(e)}", None, None, None, None, None, None, None, None, None
progress(1.0, "Preparing results")
results = f"Number of persons/clusters detected: {num_clusters}\n\n"
results += f"Breakdown of persons/clusters:\n"
for cluster_id in range(num_clusters):
results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n"
results += f"\nTop {num_anomalies} anomalies (All Features):\n"
results += "\n".join([f"{score:.2f} at {timecode}" for score, timecode in
zip(anomaly_scores_all[top_indices_all[1:]],
df['Timecode'].iloc[top_indices_all[1:]].values)])
results += f"\n\nTop {num_anomalies} anomalies (Components Only):\n"
results += "\n".join([f"{score:.2f} at {timecode}" for score, timecode in
zip(anomaly_scores_comp[top_indices_comp[1:]],
df['Timecode'].iloc[top_indices_comp[1:]].values)])
for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']:
results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Anomalies:\n"
results += "\n".join([f"{emotion_anomalies[emotion]['scores'][i]:.2f} at {df['Timecode'].iloc[i]}"
for i in emotion_anomalies[emotion]['indices'] if i > 0])
return (
results,
anomaly_plot_all,
anomaly_plot_comp,
*emotion_plots,
face_samples
)
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Anomalies"),
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Components"),
gr.Slider(minimum=1, maximum=20, step=1, value=15, label="Desired FPS"),
gr.Slider(minimum=1, maximum=32, step=1, value=8, label="Batch Size")
],
outputs=[
gr.Textbox(label="Anomaly Detection Results"),
gr.Plot(label="Anomaly Scores (Facial Features + Emotions)"),
gr.Plot(label="Anomaly Scores (Facial Features)"),
gr.Plot(label="Fear Anomalies"),
gr.Plot(label="Sad Anomalies"),
gr.Plot(label="Angry Anomalies"),
gr.Plot(label="Happy Anomalies"),
gr.Plot(label="Surprise Anomalies"),
gr.Plot(label="Neutral Anomalies"),
gr.Gallery(label="Detected Persons", columns=[2], rows=[1], height="auto")
],
title="Facial Expressions Anomaly Detection",
description="""
This application detects anomalies in facial expressions and emotions from a video input.
It identifies distinct persons in the video and provides a sample face for each.
Adjust the parameters as needed:
- Number of Anomalies: How many top anomalies or high intensities to highlight
- Number of Components: Complexity of the facial expression model
- Desired FPS: Frames per second to analyze (lower for faster processing)
- Batch Size: Affects processing speed and memory usage
""",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch() |