Spaces:
Sleeping
Sleeping
File size: 10,607 Bytes
03d9d99 b576153 10c6916 b576153 10c6916 5edecda 10c6916 9a042e3 10c6916 b576153 02c74f6 004e551 bb04e0b 5edecda bb2c7f1 5edecda 10c6916 b576153 5edecda 10c6916 5edecda 82f7ded 8e3d89c 10c6916 4516b32 b576153 10c6916 b576153 10c6916 b576153 1084e8e e014439 1084e8e 5edecda b576153 10c6916 2d4b661 b576153 10c6916 9a042e3 10c6916 b576153 5edecda b576153 5edecda b576153 5edecda b576153 5edecda b576153 10c6916 b576153 5edecda 10c6916 b576153 5edecda e014439 5edecda 004e551 2517f51 98c62ab 004e551 5edecda 004e551 8d79bf5 004e551 d1b3a05 004e551 dbff27c 004e551 dbff27c 004e551 dbff27c 004e551 a5e0d40 004e551 dbff27c 004e551 a5e0d40 004e551 5edecda 82f7ded 5edecda 82f7ded 5edecda 5006f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import streamlit as st
import os
import requests
import pickle
import pandas as pd
import nltk
import spacy
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
import numpy as np
############
from nltk.stem import WordNetLemmatizer
from nltk import ne_chunk, pos_tag, word_tokenize
from nltk.tree import Tree
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
nltk.download('wordnet')
nltk.download('maxent_ne_chunker')
nltk.download('words')
#######
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
#version
st.markdown("v1.88")
# URL of the text file
url = 'https://jaifar.net/text.txt'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
}
response = requests.get(url, headers=headers)
# Check if the request was successful
if response.status_code == 200:
# Read the content of the file
content = response.text
# Print the content of the file
# print(content)
else:
# Handle the case when the request fails
print('Failed to download the file.')
#title
st.title("Smart Detection System of AI-Generated Text Models")
#subtitle
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
#input text
input_paragraph = st.text_area("Input your text here")
words_counts = word_tokenize(input_paragraph)
final_words = len(words_counts)
st.write('Words counts: ', final_words)
# Define your options
options = ["AI vs AI - RandomForest - 88 Samples", "AI vs AI - Ridge - 2000 Samples", "AI vs Human"]
# Create a dropdown menu with "Option 2" as the default
# selected_option = st.selectbox('Select an Option', options, index=1)
selected_option = st.selectbox('Select an Option', options)
# Check if the file exists
if not os.path.isfile('AI_vs_AI_Ridge_2000_Samples.pkl'):
# Download the zip file if it doesn't exist
url = 'https://jaifar.net/AI_vs_AI_Ridge_2000_Samples.pkl'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
}
response = requests.get(url, headers=headers)
# Save the file
with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'wb') as file2:
file2.write(response.content)
# df = pd.DataFrame(columns=["paragraph"])
# df = df.append({"paragraph": input_paragraph}, ignore_index=True)
df = pd.DataFrame([input_paragraph], columns=["paragraph"])
# Variable to control number of words to retrieve
num_words = 500
# Retrieving only the first num_words words of the paragraph
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
# Extracting features
def extract_features_AI_vs_AI_RandomForest_88_Samples(text):
words = word_tokenize(text)
sentences = sent_tokenize(text)
avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
punctuation_count = len([char for char in text if char in '.,;:?!'])
stopword_count = len([word for word in words if word in stopwords.words('english')])
lemmatizer = WordNetLemmatizer()
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
tagged_words = nltk.pos_tag(words)
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
pos_features = {
'pos_IN': pos_counts['IN'],
'pos_DT': pos_counts['DT'],
'pos_NN': pos_counts['NN'],
'pos_,': pos_counts[','],
'pos_VBZ': pos_counts['VBZ'],
'pos_WDT': pos_counts['WDT'],
'pos_TO': pos_counts['TO'],
'pos_VB': pos_counts['VB'],
'pos_VBG': pos_counts['VBG'],
'pos_.': pos_counts['.'],
'pos_JJ': pos_counts['JJ'],
'pos_NNS': pos_counts['NNS'],
'pos_RB': pos_counts['RB'],
'pos_CC': pos_counts['CC'],
'pos_VBN': pos_counts['VBN'],
}
features = {
'avg_word_length': avg_word_length,
'avg_sent_length': avg_sent_length,
'punctuation_count': punctuation_count,
'stopword_count': stopword_count,
'lemma_count': lemma_count,
'named_entity_count': named_entity_count,
}
features.update(pos_features)
return pd.Series(features)
# Extracting features for AI_vs_AI_Ridge_2000_Samples
def extract_features_AI_vs_AI_Ridge_2000_Samples(text):
words = word_tokenize(text)
sentences = sent_tokenize(text)
avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
punctuation_count = len([char for char in text if char in '.,;:?!'])
stopword_count = len([word for word in words if word in stopwords.words('english')])
lemmatizer = WordNetLemmatizer()
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
tagged_words = nltk.pos_tag(words)
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
pos_features = {
'pos_IN': pos_counts['IN'],
'pos_DT': pos_counts['DT'],
'pos_NN': pos_counts['NN'],
'pos_,': pos_counts[','],
'pos_VBZ': pos_counts['VBZ'],
'pos_WDT': pos_counts['WDT'],
'pos_TO': pos_counts['TO'],
'pos_VB': pos_counts['VB'],
'pos_PRP': pos_counts['PRP'],
'pos_VBP': pos_counts['VBP'],
'pos_VBG': pos_counts['VBG'],
'pos_.': pos_counts['.'],
'pos_JJ': pos_counts['JJ'],
'pos_NNS': pos_counts['NNS'],
'pos_RB': pos_counts['RB'],
'pos_PRP$': pos_counts['PRP$'],
'pos_CC': pos_counts['CC'],
'pos_MD': pos_counts['MD'],
'pos_VBN': pos_counts['VBN'],
'pos_NNP': pos_counts['NNP'],
}
features = {
'avg_word_length': avg_word_length,
'avg_sent_length': avg_sent_length,
'punctuation_count': punctuation_count,
'stopword_count': stopword_count,
'lemma_count': lemma_count,
'named_entity_count': named_entity_count,
}
# features.update(pos_features)
features = pd.concat([features, pd.DataFrame(pos_features, index=[0])], axis=1)
return pd.Series(features)
# Function from Code(2)
def add_vectorized_features(df):
vectorizer = CountVectorizer()
tfidf_vectorizer = TfidfVectorizer()
X_bow = vectorizer.fit_transform(df['paragraph'])
X_tfidf = tfidf_vectorizer.fit_transform(df['paragraph'])
df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer.get_feature_names_out())
df_tfidf = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names_out())
df = pd.concat([df, df_bow, df_tfidf], axis=1)
return df
# Function define AI_vs_AI_RandomForest_88_Samples
def AI_vs_AI_RandomForest_88_Samples(df):
# Check if the file exists
if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
# Download the zip file if it doesn't exist
url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
}
response = requests.get(url, headers=headers)
# Save the file
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
file.write(response.content)
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
clf_loaded = pickle.load(file)
input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
predicted_llm = clf_loaded.predict(input_features)
st.write(f"Predicted LLM: {predicted_llm[0]}")
try:
predicted_proba = clf_loaded.predict_proba(input_features)
except Exception as e:
st.write(f"An error occurred: {str(e)}")
labels = clf_loaded.classes_
# Create a mapping from old labels to new labels
label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
# Apply the mapping to the labels
new_labels = [label_mapping[label] for label in labels]
# Create a dictionary that maps new labels to probabilities
prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
# Convert probabilities to percentages and sort the dictionary in descending order
prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
# Print the dictionary
#st.write(prob_dict)
# Create a progress bar and a bar chart for each LLM
for llm, prob in prob_dict.items():
st.write(llm + ': ' + prob)
st.progress(float(prob.strip('%'))/100)
return
def AI_vs_AI_Ridge_2000_Samples(df):
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'rb') as file2:
clf_loaded = pickle.load(file2)
input_features = df['paragraph'].apply(extract_features_AI_vs_AI_Ridge_2000_Samples)
# Here, input_features is a DataFrame, not a Series
input_features = pd.concat(input_features.values, ignore_index=True)
# Add new vectorized features
df = add_vectorized_features(df)
# Concatenate input_features and df along columns
final_features = pd.concat([input_features, df], axis=1)
predicted_llm = clf_loaded.predict(final_features)
st.write(f"Predicted LLM: {predicted_llm[0]}")
return
# Creates a button
press_me_button = st.button("Which Model Used?")
if press_me_button:
# Use the selected option to control the flow of your application
if selected_option == "AI vs AI - RandomForest - 88 Samples":
AI_vs_AI_RandomForest_88_Samples(df)
elif selected_option == "AI vs AI - Ridge - 2000 Samples":
AI_vs_AI_Ridge_2000_Samples(df)
elif selected_option == "AI vs Human":
st.write("You selected AI vs Human!")
|