Spaces:
Sleeping
Sleeping
jaifar530
commited on
fix spycy
Browse files
app.py
CHANGED
@@ -1,90 +1,65 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
#title
|
4 |
-
st.title("Smart Detection System of AI-Generated Text Models")
|
5 |
-
|
6 |
-
#subtitle
|
7 |
-
st.markdown("## This is a POC repo for Smart Detection System of AI Generated Text Models project, it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)##")
|
8 |
-
|
9 |
import os
|
10 |
import requests
|
11 |
import pickle
|
12 |
import pandas as pd
|
13 |
import nltk
|
14 |
-
from spacy_huggingface_hub import en_core_web_sm
|
15 |
from nltk.corpus import stopwords
|
16 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
|
|
17 |
import numpy as np
|
|
|
18 |
nltk.download('punkt')
|
19 |
nltk.download('stopwords')
|
20 |
nltk.download('averaged_perceptron_tagger')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Check if the file exists
|
23 |
if not os.path.isfile('RandomForestClassifier.pkl'):
|
24 |
# Download the zip file if it doesn't exist
|
25 |
url = 'https://jaifar.net/RandomForestClassifier.pkl'
|
26 |
-
headers = {
|
27 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
28 |
-
}
|
29 |
-
|
30 |
response = requests.get(url, headers=headers)
|
31 |
-
|
32 |
# Save the file
|
33 |
with open('RandomForestClassifier.pkl', 'wb') as file:
|
34 |
file.write(response.content)
|
35 |
|
36 |
-
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
37 |
with open('RandomForestClassifier.pkl', 'rb') as file:
|
38 |
clf_loaded = pickle.load(file)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
# # Loading a SpaCy model for Named Entity Recognition and Lemmatization
|
43 |
-
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
44 |
-
|
45 |
-
# Using spacy.load().
|
46 |
-
# import spacy
|
47 |
-
nlp = spacy.load("en_core_web_sm")
|
48 |
-
|
49 |
-
# # Importing as module.
|
50 |
-
# import en_core_web_sm
|
51 |
-
# nlp = en_core_web_sm.load()
|
52 |
-
|
53 |
-
nlp = spacy.load('en_core_web_sm')
|
54 |
-
|
55 |
-
# # Your input paragraph
|
56 |
-
# input_paragraph = "Your paragraph here..."
|
57 |
-
|
58 |
-
# # Read the paragraph from a text file
|
59 |
-
# with open('paragraph.txt', 'r') as file:
|
60 |
-
# input_paragraph = file.read()
|
61 |
-
|
62 |
input_paragraph = st.text_area("Input your text here")
|
63 |
-
|
64 |
df = pd.DataFrame(columns=["paragraph"])
|
65 |
df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
# Variable to control number of words to retrieve
|
70 |
num_words = 500
|
71 |
-
|
72 |
-
# Retrieving only the first num_words words of the paragraph
|
73 |
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
74 |
|
75 |
-
# Extracting features
|
76 |
def extract_features(text):
|
77 |
words = word_tokenize(text)
|
78 |
sentences = sent_tokenize(text)
|
79 |
-
doc = nlp(text)
|
80 |
-
|
81 |
avg_word_length = sum(len(word) for word in words) / len(words)
|
82 |
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
83 |
punctuation_count = len([char for char in text if char in '.,;:?!'])
|
84 |
stopword_count = len([word for word in words if word in stopwords.words('english')])
|
85 |
-
lemma_count = len(set(
|
86 |
-
named_entity_count =
|
87 |
-
|
88 |
tagged_words = nltk.pos_tag(words)
|
89 |
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
90 |
pos_features = {
|
@@ -104,7 +79,6 @@ def extract_features(text):
|
|
104 |
'pos_CC': pos_counts['CC'],
|
105 |
'pos_VBN': pos_counts['VBN'],
|
106 |
}
|
107 |
-
|
108 |
features = {
|
109 |
'avg_word_length': avg_word_length,
|
110 |
'avg_sent_length': avg_sent_length,
|
@@ -114,22 +88,11 @@ def extract_features(text):
|
|
114 |
'named_entity_count': named_entity_count,
|
115 |
}
|
116 |
features.update(pos_features)
|
117 |
-
|
118 |
return pd.Series(features)
|
119 |
-
#return pd.DataFrame(features)
|
120 |
|
121 |
-
|
122 |
-
# Creates a button named 'Press me'
|
123 |
press_me_button = st.button("Press me")
|
124 |
|
125 |
if press_me_button:
|
126 |
-
# Display the text entered by the user
|
127 |
-
|
128 |
input_features = df['paragraph'].apply(extract_features)
|
129 |
predicted_llm = clf_loaded.predict(input_features)
|
130 |
st.write(f"Predicted LLM: {predicted_llm[0]}")
|
131 |
-
|
132 |
-
# Get the features of the input paragraph
|
133 |
-
#input_features = extract_features(input_paragraph)
|
134 |
-
|
135 |
-
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
import pickle
|
5 |
import pandas as pd
|
6 |
import nltk
|
|
|
7 |
from nltk.corpus import stopwords
|
8 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
9 |
+
from nltk.stem import WordNetLemmatizer
|
10 |
import numpy as np
|
11 |
+
|
12 |
nltk.download('punkt')
|
13 |
nltk.download('stopwords')
|
14 |
nltk.download('averaged_perceptron_tagger')
|
15 |
+
nltk.download('wordnet') # needed for lemmatization
|
16 |
+
|
17 |
+
# Setting up Hugging Face API for NER
|
18 |
+
API_URL = "https://api-inference.huggingface.co/models/spacy/en_core_web_sm"
|
19 |
+
headers = {"Authorization": "Bearer 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"}
|
20 |
+
|
21 |
+
def get_entities(text):
|
22 |
+
data = {"inputs": text}
|
23 |
+
response = requests.post(API_URL, headers=headers, json=data)
|
24 |
+
entities = [item['entity_group'] for item in response.json()[0]]
|
25 |
+
return len(entities)
|
26 |
+
|
27 |
+
# Set up lemmatizer
|
28 |
+
lemmatizer = WordNetLemmatizer()
|
29 |
+
|
30 |
+
#title
|
31 |
+
st.title("Smart Detection System of AI-Generated Text Models")
|
32 |
+
st.markdown("## This is a POC repo for Smart Detection System of AI Generated Text Models project, it is a pre-trained model that detect the probabilities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)##")
|
33 |
|
34 |
# Check if the file exists
|
35 |
if not os.path.isfile('RandomForestClassifier.pkl'):
|
36 |
# Download the zip file if it doesn't exist
|
37 |
url = 'https://jaifar.net/RandomForestClassifier.pkl'
|
38 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
|
|
|
|
|
|
|
39 |
response = requests.get(url, headers=headers)
|
|
|
40 |
# Save the file
|
41 |
with open('RandomForestClassifier.pkl', 'wb') as file:
|
42 |
file.write(response.content)
|
43 |
|
|
|
44 |
with open('RandomForestClassifier.pkl', 'rb') as file:
|
45 |
clf_loaded = pickle.load(file)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
input_paragraph = st.text_area("Input your text here")
|
|
|
48 |
df = pd.DataFrame(columns=["paragraph"])
|
49 |
df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
50 |
|
|
|
|
|
|
|
51 |
num_words = 500
|
|
|
|
|
52 |
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
53 |
|
|
|
54 |
def extract_features(text):
|
55 |
words = word_tokenize(text)
|
56 |
sentences = sent_tokenize(text)
|
|
|
|
|
57 |
avg_word_length = sum(len(word) for word in words) / len(words)
|
58 |
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
59 |
punctuation_count = len([char for char in text if char in '.,;:?!'])
|
60 |
stopword_count = len([word for word in words if word in stopwords.words('english')])
|
61 |
+
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
|
62 |
+
named_entity_count = get_entities(text)
|
|
|
63 |
tagged_words = nltk.pos_tag(words)
|
64 |
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
65 |
pos_features = {
|
|
|
79 |
'pos_CC': pos_counts['CC'],
|
80 |
'pos_VBN': pos_counts['VBN'],
|
81 |
}
|
|
|
82 |
features = {
|
83 |
'avg_word_length': avg_word_length,
|
84 |
'avg_sent_length': avg_sent_length,
|
|
|
88 |
'named_entity_count': named_entity_count,
|
89 |
}
|
90 |
features.update(pos_features)
|
|
|
91 |
return pd.Series(features)
|
|
|
92 |
|
|
|
|
|
93 |
press_me_button = st.button("Press me")
|
94 |
|
95 |
if press_me_button:
|
|
|
|
|
96 |
input_features = df['paragraph'].apply(extract_features)
|
97 |
predicted_llm = clf_loaded.predict(input_features)
|
98 |
st.write(f"Predicted LLM: {predicted_llm[0]}")
|
|
|
|
|
|
|
|
|
|