jaifar530 commited on
Commit
bb04e0b
·
unverified ·
1 Parent(s): ce85d81
Files changed (1) hide show
  1. app.py +29 -7
app.py CHANGED
@@ -23,8 +23,30 @@ nltk.download('stopwords')
23
  nltk.download('averaged_perceptron_tagger')
24
 
25
  #version
26
- st.markdown("v1.4")
27
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  #title
30
  st.title("Smart Detection System of AI-Generated Text Models")
@@ -33,7 +55,7 @@ st.title("Smart Detection System of AI-Generated Text Models")
33
  st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
34
 
35
  #input text
36
- input_paragraph = st.text_area("Input your text here")
37
  words_counts = word_tokenize(input_paragraph)
38
  final_words = len(words_counts)
39
  st.write('Words counts: ', final_words)
@@ -208,12 +230,12 @@ def AI_vs_AI_RandomForest_88_Samples(df):
208
  response = requests.get(url, headers=headers)
209
 
210
  # Save the file
211
- with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file1:
212
- file1.write(response.content)
213
 
214
  # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
215
- with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file1:
216
- clf_loaded = pickle.load(file1)
217
 
218
  input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
219
 
 
23
  nltk.download('averaged_perceptron_tagger')
24
 
25
  #version
26
+ st.markdown("v1.5")
27
+
28
+
29
+ # URL of the text file
30
+ url = 'https://jaifar.net/text.txt'
31
+
32
+ headers = {
33
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
34
+ }
35
+
36
+ response = requests.get(url, headers=headers)
37
+
38
+ # Check if the request was successful
39
+ if response.status_code == 200:
40
+ # Read the content of the file
41
+ content = response.text
42
+
43
+ # Print the content of the file
44
+ # print(content)
45
+ else:
46
+ # Handle the case when the request fails
47
+ print('Failed to download the file.')
48
+
49
+
50
 
51
  #title
52
  st.title("Smart Detection System of AI-Generated Text Models")
 
55
  st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
56
 
57
  #input text
58
+ input_paragraph = st.text_area("Input your text here", value=content)
59
  words_counts = word_tokenize(input_paragraph)
60
  final_words = len(words_counts)
61
  st.write('Words counts: ', final_words)
 
230
  response = requests.get(url, headers=headers)
231
 
232
  # Save the file
233
+ with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
234
+ file.write(response.content)
235
 
236
  # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
237
+ with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
238
+ clf_loaded = pickle.load(file)
239
 
240
  input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
241