Spaces:
Running
Running
jaifar530
commited on
added the model
Browse files
app.py
CHANGED
@@ -6,3 +6,120 @@ st.title("Smart Detection System of AI-Generated Text Models")
|
|
6 |
#subtitle
|
7 |
st.markdown("## This is a POC repo for Smart Detection System of AI Generated Text Models project, it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)##")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
#subtitle
|
7 |
st.markdown("## This is a POC repo for Smart Detection System of AI Generated Text Models project, it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)##")
|
8 |
|
9 |
+
import os
|
10 |
+
import requests
|
11 |
+
import pickle
|
12 |
+
import pandas as pd
|
13 |
+
import nltk
|
14 |
+
import spacy
|
15 |
+
from nltk.corpus import stopwords
|
16 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
17 |
+
import numpy as np
|
18 |
+
nltk.download('punkt')
|
19 |
+
nltk.download('stopwords')
|
20 |
+
nltk.download('averaged_perceptron_tagger')
|
21 |
+
|
22 |
+
# Check if the file exists
|
23 |
+
if not os.path.isfile('RandomForestClassifier.pkl'):
|
24 |
+
# Download the zip file if it doesn't exist
|
25 |
+
url = 'https://jaifar.net/RandomForestClassifier.pkl'
|
26 |
+
headers = {
|
27 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
28 |
+
}
|
29 |
+
|
30 |
+
response = requests.get(url, headers=headers)
|
31 |
+
|
32 |
+
# Save the file
|
33 |
+
with open('RandomForestClassifier.pkl', 'wb') as file:
|
34 |
+
file.write(response.content)
|
35 |
+
|
36 |
+
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
37 |
+
with open('RandomForestClassifier.pkl', 'rb') as file:
|
38 |
+
clf_loaded = pickle.load(file)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Loading a SpaCy model for Named Entity Recognition and Lemmatization
|
43 |
+
nlp = spacy.load('en_core_web_sm')
|
44 |
+
|
45 |
+
# # Your input paragraph
|
46 |
+
# input_paragraph = "Your paragraph here..."
|
47 |
+
|
48 |
+
# # Read the paragraph from a text file
|
49 |
+
# with open('paragraph.txt', 'r') as file:
|
50 |
+
# input_paragraph = file.read()
|
51 |
+
|
52 |
+
input_paragraph = st.text_area("Input your text here")
|
53 |
+
|
54 |
+
df = pd.DataFrame(columns=["paragraph"])
|
55 |
+
df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
# Variable to control number of words to retrieve
|
60 |
+
num_words = 500
|
61 |
+
|
62 |
+
# Retrieving only the first num_words words of the paragraph
|
63 |
+
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
64 |
+
|
65 |
+
# Extracting features
|
66 |
+
def extract_features(text):
|
67 |
+
words = word_tokenize(text)
|
68 |
+
sentences = sent_tokenize(text)
|
69 |
+
doc = nlp(text)
|
70 |
+
|
71 |
+
avg_word_length = sum(len(word) for word in words) / len(words)
|
72 |
+
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
73 |
+
punctuation_count = len([char for char in text if char in '.,;:?!'])
|
74 |
+
stopword_count = len([word for word in words if word in stopwords.words('english')])
|
75 |
+
lemma_count = len(set(token.lemma_ for token in doc))
|
76 |
+
named_entity_count = len(doc.ents)
|
77 |
+
|
78 |
+
tagged_words = nltk.pos_tag(words)
|
79 |
+
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
80 |
+
pos_features = {
|
81 |
+
'pos_IN': pos_counts['IN'],
|
82 |
+
'pos_DT': pos_counts['DT'],
|
83 |
+
'pos_NN': pos_counts['NN'],
|
84 |
+
'pos_,': pos_counts[','],
|
85 |
+
'pos_VBZ': pos_counts['VBZ'],
|
86 |
+
'pos_WDT': pos_counts['WDT'],
|
87 |
+
'pos_TO': pos_counts['TO'],
|
88 |
+
'pos_VB': pos_counts['VB'],
|
89 |
+
'pos_VBG': pos_counts['VBG'],
|
90 |
+
'pos_.': pos_counts['.'],
|
91 |
+
'pos_JJ': pos_counts['JJ'],
|
92 |
+
'pos_NNS': pos_counts['NNS'],
|
93 |
+
'pos_RB': pos_counts['RB'],
|
94 |
+
'pos_CC': pos_counts['CC'],
|
95 |
+
'pos_VBN': pos_counts['VBN'],
|
96 |
+
}
|
97 |
+
|
98 |
+
features = {
|
99 |
+
'avg_word_length': avg_word_length,
|
100 |
+
'avg_sent_length': avg_sent_length,
|
101 |
+
'punctuation_count': punctuation_count,
|
102 |
+
'stopword_count': stopword_count,
|
103 |
+
'lemma_count': lemma_count,
|
104 |
+
'named_entity_count': named_entity_count,
|
105 |
+
}
|
106 |
+
features.update(pos_features)
|
107 |
+
|
108 |
+
return pd.Series(features)
|
109 |
+
#return pd.DataFrame(features)
|
110 |
+
|
111 |
+
|
112 |
+
# Creates a button named 'Press me'
|
113 |
+
press_me_button = st.button("Press me")
|
114 |
+
|
115 |
+
if press_me_button:
|
116 |
+
# Display the text entered by the user
|
117 |
+
|
118 |
+
input_features = df['paragraph'].apply(extract_features)
|
119 |
+
predicted_llm = clf_loaded.predict(input_features)
|
120 |
+
st.write(f"Predicted LLM: {predicted_llm[0]}")
|
121 |
+
|
122 |
+
# Get the features of the input paragraph
|
123 |
+
#input_features = extract_features(input_paragraph)
|
124 |
+
|
125 |
+
|