Spaces:
Sleeping
Sleeping
jaifar530
commited on
fix spacy
Browse files
app.py
CHANGED
@@ -1,71 +1,94 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
import pickle
|
5 |
import pandas as pd
|
6 |
import nltk
|
|
|
7 |
from nltk.corpus import stopwords
|
8 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
9 |
-
from nltk.stem import WordNetLemmatizer
|
10 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
12 |
nltk.download('punkt')
|
13 |
nltk.download('stopwords')
|
14 |
nltk.download('averaged_perceptron_tagger')
|
15 |
-
nltk.download('wordnet') # needed for lemmatization
|
16 |
-
|
17 |
-
# Setting up Hugging Face API for NER
|
18 |
-
API_URL = "https://api-inference.huggingface.co/models/spacy/en_core_web_sm"
|
19 |
-
headers = {"Authorization": "Bearer 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"}
|
20 |
-
|
21 |
-
def get_entities(text):
|
22 |
-
data = {"inputs": text}
|
23 |
-
response = requests.post(API_URL, headers=headers, json=data)
|
24 |
-
try:
|
25 |
-
entities = [item['entity_group'] for item in response.json()[0]]
|
26 |
-
except Exception as e:
|
27 |
-
print("Error:", e)
|
28 |
-
print("Response:", response.content)
|
29 |
-
entities = []
|
30 |
-
return len(entities)
|
31 |
-
|
32 |
-
# Set up lemmatizer
|
33 |
-
lemmatizer = WordNetLemmatizer()
|
34 |
-
|
35 |
-
#title
|
36 |
-
st.title("Smart Detection System of AI-Generated Text Models")
|
37 |
-
st.markdown("## This is a POC repo for Smart Detection System of AI Generated Text Models project, it is a pre-trained model that detect the probabilities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)##")
|
38 |
|
39 |
# Check if the file exists
|
40 |
if not os.path.isfile('RandomForestClassifier.pkl'):
|
41 |
# Download the zip file if it doesn't exist
|
42 |
url = 'https://jaifar.net/RandomForestClassifier.pkl'
|
43 |
-
headers = {
|
|
|
|
|
|
|
44 |
response = requests.get(url, headers=headers)
|
|
|
45 |
# Save the file
|
46 |
with open('RandomForestClassifier.pkl', 'wb') as file:
|
47 |
file.write(response.content)
|
48 |
|
|
|
49 |
with open('RandomForestClassifier.pkl', 'rb') as file:
|
50 |
clf_loaded = pickle.load(file)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
input_paragraph = st.text_area("Input your text here")
|
|
|
53 |
df = pd.DataFrame(columns=["paragraph"])
|
54 |
df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
55 |
|
|
|
|
|
|
|
56 |
num_words = 500
|
|
|
|
|
57 |
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
58 |
|
|
|
59 |
def extract_features(text):
|
60 |
words = word_tokenize(text)
|
61 |
sentences = sent_tokenize(text)
|
|
|
62 |
avg_word_length = sum(len(word) for word in words) / len(words)
|
63 |
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
64 |
punctuation_count = len([char for char in text if char in '.,;:?!'])
|
65 |
stopword_count = len([word for word in words if word in stopwords.words('english')])
|
|
|
|
|
66 |
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
|
67 |
-
|
68 |
-
|
|
|
69 |
tagged_words = nltk.pos_tag(words)
|
70 |
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
71 |
pos_features = {
|
@@ -85,6 +108,7 @@ def extract_features(text):
|
|
85 |
'pos_CC': pos_counts['CC'],
|
86 |
'pos_VBN': pos_counts['VBN'],
|
87 |
}
|
|
|
88 |
features = {
|
89 |
'avg_word_length': avg_word_length,
|
90 |
'avg_sent_length': avg_sent_length,
|
@@ -94,8 +118,11 @@ def extract_features(text):
|
|
94 |
'named_entity_count': named_entity_count,
|
95 |
}
|
96 |
features.update(pos_features)
|
|
|
97 |
return pd.Series(features)
|
98 |
|
|
|
|
|
99 |
press_me_button = st.button("Press me")
|
100 |
|
101 |
if press_me_button:
|
@@ -117,4 +144,4 @@ if press_me_button:
|
|
117 |
prob_dict = dict(zip(new_labels, probabilities))
|
118 |
|
119 |
# Print the dictionary
|
120 |
-
st.write(prob_dict)
|
|
|
1 |
import streamlit as st
|
2 |
+
|
3 |
+
#title
|
4 |
+
st.title("Smart Detection System of AI-Generated Text Models")
|
5 |
+
|
6 |
+
#subtitle
|
7 |
+
st.markdown("## This is a POC repo for Smart Detection System of AI Generated Text Models project, it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)##")
|
8 |
+
|
9 |
import os
|
10 |
import requests
|
11 |
import pickle
|
12 |
import pandas as pd
|
13 |
import nltk
|
14 |
+
import spacy
|
15 |
from nltk.corpus import stopwords
|
16 |
from nltk.tokenize import word_tokenize, sent_tokenize
|
|
|
17 |
import numpy as np
|
18 |
+
############
|
19 |
+
from nltk.stem import WordNetLemmatizer
|
20 |
+
from nltk import ne_chunk, pos_tag, word_tokenize
|
21 |
+
from nltk.tree import Tree
|
22 |
+
nltk.download('wordnet')
|
23 |
+
nltk.download('maxent_ne_chunker')
|
24 |
+
nltk.download('words')
|
25 |
|
26 |
+
#######
|
27 |
nltk.download('punkt')
|
28 |
nltk.download('stopwords')
|
29 |
nltk.download('averaged_perceptron_tagger')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Check if the file exists
|
32 |
if not os.path.isfile('RandomForestClassifier.pkl'):
|
33 |
# Download the zip file if it doesn't exist
|
34 |
url = 'https://jaifar.net/RandomForestClassifier.pkl'
|
35 |
+
headers = {
|
36 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
37 |
+
}
|
38 |
+
|
39 |
response = requests.get(url, headers=headers)
|
40 |
+
|
41 |
# Save the file
|
42 |
with open('RandomForestClassifier.pkl', 'wb') as file:
|
43 |
file.write(response.content)
|
44 |
|
45 |
+
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
46 |
with open('RandomForestClassifier.pkl', 'rb') as file:
|
47 |
clf_loaded = pickle.load(file)
|
48 |
|
49 |
+
|
50 |
+
|
51 |
+
# # Loading a SpaCy model for Named Entity Recognition and Lemmatization
|
52 |
+
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
53 |
+
|
54 |
+
# Using spacy.load().
|
55 |
+
nlp = spacy.load('en_core_web_sm')
|
56 |
+
|
57 |
+
# # Your input paragraph
|
58 |
+
# input_paragraph = "Your paragraph here..."
|
59 |
+
|
60 |
+
# # Read the paragraph from a text file
|
61 |
+
# with open('paragraph.txt', 'r') as file:
|
62 |
+
# input_paragraph = file.read()
|
63 |
+
|
64 |
input_paragraph = st.text_area("Input your text here")
|
65 |
+
|
66 |
df = pd.DataFrame(columns=["paragraph"])
|
67 |
df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
68 |
|
69 |
+
|
70 |
+
|
71 |
+
# Variable to control number of words to retrieve
|
72 |
num_words = 500
|
73 |
+
|
74 |
+
# Retrieving only the first num_words words of the paragraph
|
75 |
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
76 |
|
77 |
+
# Extracting features
|
78 |
def extract_features(text):
|
79 |
words = word_tokenize(text)
|
80 |
sentences = sent_tokenize(text)
|
81 |
+
|
82 |
avg_word_length = sum(len(word) for word in words) / len(words)
|
83 |
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
84 |
punctuation_count = len([char for char in text if char in '.,;:?!'])
|
85 |
stopword_count = len([word for word in words if word in stopwords.words('english')])
|
86 |
+
|
87 |
+
lemmatizer = WordNetLemmatizer()
|
88 |
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
|
89 |
+
|
90 |
+
named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
|
91 |
+
|
92 |
tagged_words = nltk.pos_tag(words)
|
93 |
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
94 |
pos_features = {
|
|
|
108 |
'pos_CC': pos_counts['CC'],
|
109 |
'pos_VBN': pos_counts['VBN'],
|
110 |
}
|
111 |
+
|
112 |
features = {
|
113 |
'avg_word_length': avg_word_length,
|
114 |
'avg_sent_length': avg_sent_length,
|
|
|
118 |
'named_entity_count': named_entity_count,
|
119 |
}
|
120 |
features.update(pos_features)
|
121 |
+
|
122 |
return pd.Series(features)
|
123 |
|
124 |
+
|
125 |
+
# Creates a button named 'Press me'
|
126 |
press_me_button = st.button("Press me")
|
127 |
|
128 |
if press_me_button:
|
|
|
144 |
prob_dict = dict(zip(new_labels, probabilities))
|
145 |
|
146 |
# Print the dictionary
|
147 |
+
st.write(prob_dict)
|