Spaces:
Running
Running
jaifar530
commited on
tr
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ nltk.download('stopwords')
|
|
23 |
nltk.download('averaged_perceptron_tagger')
|
24 |
|
25 |
#version
|
26 |
-
st.markdown("v1.
|
27 |
|
28 |
|
29 |
# URL of the text file
|
@@ -218,56 +218,57 @@ def add_vectorized_features(df):
|
|
218 |
|
219 |
# Function define AI_vs_AI_RandomForest_88_Samples
|
220 |
def AI_vs_AI_RandomForest_88_Samples(df):
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
|
236 |
-
file.write(response.content)
|
237 |
|
238 |
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
239 |
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
|
240 |
clf_loaded = pickle.load(file)
|
241 |
|
242 |
-
|
243 |
|
244 |
-
|
245 |
-
|
246 |
|
|
|
247 |
predicted_proba = clf_loaded.predict_proba(input_features)
|
248 |
-
|
249 |
-
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
253 |
|
254 |
-
|
255 |
-
|
256 |
|
257 |
-
|
258 |
-
|
259 |
|
260 |
-
|
261 |
-
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
st.write(llm + ': ' + prob)
|
266 |
-
st.progress(float(prob.strip('%'))/100)
|
267 |
-
return
|
268 |
-
except Exception as e:
|
269 |
-
st.write(f"An error occurred: {str(e)}")
|
270 |
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
def AI_vs_AI_Ridge_2000_Samples(df):
|
273 |
|
|
|
23 |
nltk.download('averaged_perceptron_tagger')
|
24 |
|
25 |
#version
|
26 |
+
st.markdown("v1.88")
|
27 |
|
28 |
|
29 |
# URL of the text file
|
|
|
218 |
|
219 |
# Function define AI_vs_AI_RandomForest_88_Samples
|
220 |
def AI_vs_AI_RandomForest_88_Samples(df):
|
221 |
+
|
222 |
+
# Check if the file exists
|
223 |
+
if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
|
224 |
+
# Download the zip file if it doesn't exist
|
225 |
+
url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
|
226 |
+
headers = {
|
227 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
228 |
+
}
|
229 |
+
|
230 |
+
response = requests.get(url, headers=headers)
|
231 |
+
|
232 |
+
# Save the file
|
233 |
+
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
|
234 |
+
file.write(response.content)
|
|
|
|
|
235 |
|
236 |
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
237 |
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
|
238 |
clf_loaded = pickle.load(file)
|
239 |
|
240 |
+
input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
|
241 |
|
242 |
+
predicted_llm = clf_loaded.predict(input_features)
|
243 |
+
st.write(f"Predicted LLM: {predicted_llm[0]}")
|
244 |
|
245 |
+
try:
|
246 |
predicted_proba = clf_loaded.predict_proba(input_features)
|
247 |
+
except Exception as e:
|
248 |
+
st.write(f"An error occurred: {str(e)}")
|
249 |
+
|
250 |
+
labels = clf_loaded.classes_
|
251 |
|
252 |
+
# Create a mapping from old labels to new labels
|
253 |
+
label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
|
254 |
|
255 |
+
# Apply the mapping to the labels
|
256 |
+
new_labels = [label_mapping[label] for label in labels]
|
257 |
|
258 |
+
# Create a dictionary that maps new labels to probabilities
|
259 |
+
prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
|
260 |
|
261 |
+
# Convert probabilities to percentages and sort the dictionary in descending order
|
262 |
+
prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
|
263 |
|
264 |
+
# Print the dictionary
|
265 |
+
#st.write(prob_dict)
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
+
# Create a progress bar and a bar chart for each LLM
|
268 |
+
for llm, prob in prob_dict.items():
|
269 |
+
st.write(llm + ': ' + prob)
|
270 |
+
st.progress(float(prob.strip('%'))/100)
|
271 |
+
return
|
272 |
|
273 |
def AI_vs_AI_Ridge_2000_Samples(df):
|
274 |
|