jaifar530 commited on
Commit
d1b3a05
·
unverified ·
1 Parent(s): 2345a91

try/except

Browse files
Files changed (1) hide show
  1. app.py +37 -36
app.py CHANGED
@@ -218,55 +218,56 @@ def add_vectorized_features(df):
218
 
219
  # Function define AI_vs_AI_RandomForest_88_Samples
220
  def AI_vs_AI_RandomForest_88_Samples(df):
221
-
222
- # Check if the file exists
223
- if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
224
- # Download the zip file if it doesn't exist
225
- url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
226
- headers = {
227
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
228
- }
229
-
230
- response = requests.get(url, headers=headers)
231
-
232
- # Save the file
233
- with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
234
- file.write(response.content)
 
 
235
 
236
  # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
237
  with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
238
  clf_loaded = pickle.load(file)
239
 
240
- input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
241
-
242
- predicted_llm = clf_loaded.predict(input_features)
243
- st.write(f"Predicted LLM: {predicted_llm[0]}")
244
 
 
 
245
 
246
- predicted_proba = clf_loaded.predict_proba(input_features)
247
- probabilities = predicted_proba[0]
248
- labels = clf_loaded.classes_
249
 
250
- # Create a mapping from old labels to new labels
251
- label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
252
 
253
- # Apply the mapping to the labels
254
- new_labels = [label_mapping[label] for label in labels]
255
 
256
- # Create a dictionary that maps new labels to probabilities
257
- prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
258
 
259
- # Convert probabilities to percentages and sort the dictionary in descending order
260
- prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
261
 
262
- # Print the dictionary
263
- #st.write(prob_dict)
 
 
 
 
 
264
 
265
- # Create a progress bar and a bar chart for each LLM
266
- for llm, prob in prob_dict.items():
267
- st.write(llm + ': ' + prob)
268
- st.progress(float(prob.strip('%'))/100)
269
- return
270
 
271
  def AI_vs_AI_Ridge_2000_Samples(df):
272
 
 
218
 
219
  # Function define AI_vs_AI_RandomForest_88_Samples
220
  def AI_vs_AI_RandomForest_88_Samples(df):
221
+ try:
222
+ # Check if the file exists
223
+ if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
224
+ # Download the zip file if it doesn't exist
225
+ url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
226
+ headers = {
227
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
228
+ }
229
+
230
+ response = requests.get(url, headers=headers)
231
+ if response.status_code != 200:
232
+ raise Exception("Failed to download the file")
233
+
234
+ # Save the file
235
+ with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
236
+ file.write(response.content)
237
 
238
  # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
239
  with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
240
  clf_loaded = pickle.load(file)
241
 
242
+ input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
 
 
 
243
 
244
+ predicted_llm = clf_loaded.predict(input_features)
245
+ st.write(f"Predicted LLM: {predicted_llm[0]}")
246
 
247
+ predicted_proba = clf_loaded.predict_proba(input_features)
248
+ probabilities = predicted_proba[0]
249
+ labels = clf_loaded.classes_
250
 
251
+ # Create a mapping from old labels to new labels
252
+ label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
253
 
254
+ # Apply the mapping to the labels
255
+ new_labels = [label_mapping[label] for label in labels]
256
 
257
+ # Create a dictionary that maps new labels to probabilities
258
+ prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
259
 
260
+ # Convert probabilities to percentages and sort the dictionary in descending order
261
+ prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
262
 
263
+ # Create a progress bar and a bar chart for each LLM
264
+ for llm, prob in prob_dict.items():
265
+ st.write(llm + ': ' + prob)
266
+ st.progress(float(prob.strip('%'))/100)
267
+ return
268
+ except Exception as e:
269
+ st.write(f"An error occurred: {str(e)}")
270
 
 
 
 
 
 
271
 
272
  def AI_vs_AI_Ridge_2000_Samples(df):
273