jaifar530 commited on
Commit
8d79bf5
·
unverified ·
1 Parent(s): dbff27c
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -51,7 +51,7 @@ with open('RandomForestClassifier.pkl', 'rb') as file:
51
 
52
  input_paragraph = st.text_area("Input your text here")
53
  df = pd.DataFrame(columns=["paragraph"])
54
- df = df.append({"paragraph": input_paragraph}, ignore_index=True)
55
 
56
  num_words = 500
57
  input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
@@ -65,6 +65,7 @@ def extract_features(text):
65
  stopword_count = len([word for word in words if word in stopwords.words('english')])
66
  lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
67
  named_entity_count = get_entities(text)
 
68
  tagged_words = nltk.pos_tag(words)
69
  pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
70
  pos_features = {
@@ -101,7 +102,7 @@ if press_me_button:
101
  input_features = df['paragraph'].apply(extract_features)
102
  predicted_llm = clf_loaded.predict(input_features)
103
  st.write(f"Predicted LLM: {predicted_llm[0]}")
104
-
105
  predicted_proba = clf_loaded.predict_proba(input_features)
106
  probabilities = predicted_proba[0]
107
  labels = clf_loaded.classes_
@@ -116,4 +117,4 @@ if press_me_button:
116
  prob_dict = dict(zip(new_labels, probabilities))
117
 
118
  # Print the dictionary
119
- print(prob_dict)
 
51
 
52
  input_paragraph = st.text_area("Input your text here")
53
  df = pd.DataFrame(columns=["paragraph"])
54
+ df = df.concat({"paragraph": input_paragraph}, ignore_index=True)
55
 
56
  num_words = 500
57
  input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
 
65
  stopword_count = len([word for word in words if word in stopwords.words('english')])
66
  lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
67
  named_entity_count = get_entities(text)
68
+ st.write(named_entity_count)
69
  tagged_words = nltk.pos_tag(words)
70
  pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
71
  pos_features = {
 
102
  input_features = df['paragraph'].apply(extract_features)
103
  predicted_llm = clf_loaded.predict(input_features)
104
  st.write(f"Predicted LLM: {predicted_llm[0]}")
105
+
106
  predicted_proba = clf_loaded.predict_proba(input_features)
107
  probabilities = predicted_proba[0]
108
  labels = clf_loaded.classes_
 
117
  prob_dict = dict(zip(new_labels, probabilities))
118
 
119
  # Print the dictionary
120
+ st.write(prob_dict)