Spaces:
Paused
Paused
File size: 46,811 Bytes
939c5b6 986787e 564dc92 0cf6bf3 939c5b6 c8f1081 60b1ab3 5203bf1 4283557 564dc92 4624ca2 b4b2728 5203bf1 3fa8d86 6a1f212 939c5b6 6a1f212 939c5b6 9b5f7bf 5203bf1 28f5c24 cd230ad 28f5c24 cd230ad 28f5c24 512d879 28f5c24 3fa8d86 869cf1f 9b5f7bf 8969c48 939c5b6 75eaefb 939c5b6 c8f1081 a140def 939c5b6 a140def 939c5b6 d509fc5 a140def 52b0001 9a7ba63 b5e32a6 a140def 52b0001 9a7ba63 52b0001 9a7ba63 c8f1081 4283557 4305e2f 4283557 4305e2f a167bcb c8f1081 86bd1dc c8f1081 86bd1dc c8f1081 52b0001 c8f1081 2120faf c8f1081 75eaefb 5203bf1 6a1f212 b5e32a6 24b3ff4 9abed74 24b3ff4 612163b 5203bf1 6a1f212 a8323dd 5be0699 a8323dd 5be0699 a8323dd 5be0699 a8323dd 5be0699 a8323dd 1c8f285 eae733b 1c8f285 eae733b 1c8f285 eae733b 1c8f285 eae733b 1c8f285 eae733b 1c8f285 eae733b 1c8f285 eae733b 6448cc2 a8323dd eae733b ca13f6d eae733b 1c8f285 9c2c389 1c8f285 28f5c24 c1b94ea c8f1081 4209cde 4443c31 5c92e55 2fbb8d5 c1b94ea 2fbb8d5 c1b94ea 2fbb8d5 5c92e55 2fbb8d5 c1b94ea 2fbb8d5 c1b94ea 2fbb8d5 5c92e55 2fbb8d5 c1b94ea 2fbb8d5 c1b94ea 61e3841 2fbb8d5 c1b94ea 404b94f c1b94ea 404b94f c1b94ea 404b94f 33a1cf5 c1b94ea 33a1cf5 c1b94ea 33a1cf5 2fbb8d5 c1b94ea 2fbb8d5 8a9de56 2fbb8d5 c1b94ea ef66937 5c92e55 c1b94ea 5c92e55 773ef84 c1b94ea f14dc92 ca13f6d 70e3ee2 1c8f285 cd0855b 4a1881c cd0855b 8a9de56 2fbb8d5 c1b94ea 2fbb8d5 c1b94ea 2fbb8d5 c1b94ea 2fbb8d5 4443c31 669b546 2fbb8d5 4443c31 9956563 4209cde 2fbb8d5 b319975 28f5c24 e668d96 3bc821d 1369f65 6ef7b9a 52b0001 9a7ba63 52b0001 22a9756 8c7f07f dd855ea 62728c5 b0701ac 62728c5 52b0001 9a7ba63 52b0001 9a7ba63 52b0001 9a90b7a 52b0001 800db56 52b0001 f212f0b 9a7ba63 6ef7b9a 47c1e27 6ef7b9a cbe0a00 1c2e53d 60b1ab3 1c2e53d 977e15f 986787e 836038d 986787e c2184af 836038d c2184af 836038d 986787e 6ef7b9a 986787e 836038d 986787e a1ccce8 a1791d2 1c2e53d 60b1ab3 836038d 52b0001 9a7ba63 c85f33f 977e15f 52b0001 5203bf1 9a7ba63 7ce54b3 1ad3a53 5d61409 e027756 1ad3a53 52b0001 e027756 9956563 52b0001 e027756 52b0001 e027756 52b0001 a140def e027756 52b0001 9a7ba63 6a1f212 a8323dd 9a7ba63 10dab74 6b4d9f8 49868a2 a8323dd 10dab74 a8323dd 6b4d9f8 a8323dd 6b4d9f8 a8323dd 6b4d9f8 a8323dd 6b4d9f8 a8323dd 6b4d9f8 49868a2 6b4d9f8 9a7ba63 6b4d9f8 a8323dd c8f1081 1ce8e85 c8f1081 a140def c8f1081 c82efd7 c8f1081 709dafc c8f1081 d9dad18 8285c43 b2042b7 8285c43 9956563 114f9bb 1ad3a53 60b1ab3 1ad3a53 60b1ab3 1ad3a53 3f71a50 1ad3a53 60b1ab3 e878e84 21d1c8b ab60062 60b1ab3 1ad3a53 b4b2728 1ad3a53 60b1ab3 3f71a50 e878e84 89c6e54 c37d7a7 7e66111 ca13f6d 1ad3a53 35dedb5 68019b5 35dedb5 68019b5 35dedb5 d1fe1c9 0c4943d 1ad3a53 d1fe1c9 4e7f511 7e66111 1ad3a53 21d1c8b 4e7f511 1ad3a53 7e66111 1ad3a53 b4b2728 1ad3a53 4e7f511 90998cc 8bf3ae8 88ba39c 7e66111 4624ca2 7e66111 88ba39c 7e66111 88ba39c 1a4224a 88ba39c 7e66111 88ba39c 1a4224a 88ba39c 1a4224a 7e66111 b4b2728 1a4224a 7e66111 60b1ab3 9956563 0465b6f 4acbdde b2042b7 28f5c24 4209cde 0465b6f 9956563 4acbdde 4283557 13eb1f5 4acbdde 9956563 4acbdde 0465b6f 4acbdde 28f5c24 4acbdde 28f5c24 4acbdde 0465b6f 8285c43 4acbdde a8323dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 |
import gradio as gr
import requests
import os
import time
import re
import logging
import tempfile
import folium
import concurrent.futures
import torch
from PIL import Image
from datetime import datetime
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from googlemaps import Client as GoogleMapsClient
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from huggingface_hub import login
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from scipy.io.wavfile import write as write_wav
from pydub import AudioSegment
from string import punctuation
import librosa
from pathlib import Path
import torchaudio
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Neo4j imports
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_community.document_loaders import HuggingFaceDatasetLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
from serpapi.google_search import GoogleSearch
#Parler TTS v1 Modules
import os
import re
import tempfile
import soundfile as sf
from string import punctuation
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor
#API AutoDate Fix Up
def get_current_date1():
return datetime.now().strftime("%Y-%m-%d")
# Usage
current_date1 = get_current_date1()
# Set environment variables for CUDA
os.environ['PYTORCH_USE_CUDA_DSA'] = '1'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
hf_token = os.getenv("HF_TOKEN")
if hf_token is None:
print("Please set your Hugging Face token in the environment variables.")
else:
login(token=hf_token)
logging.basicConfig(level=logging.DEBUG)
embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
#Initialization
# Initialize the models
def initialize_phi_model():
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3.5-mini-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
return pipeline("text-generation", model=model, tokenizer=tokenizer)
def initialize_gpt_model():
return ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
# Initialize both models
phi_pipe = initialize_phi_model()
gpt_model = initialize_gpt_model()
# Existing embeddings and vector store for GPT-4o
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
gpt_vectorstore = PineconeVectorStore(index_name="radarfinaldata08192024", embedding=gpt_embeddings)
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})
# New vector store setup for Phi-3.5
phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings)
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})
# Pinecone setup
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index_name = "radarfinaldata08192024"
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Prompt templates
def get_current_date():
return datetime.now().strftime("%B %d, %Y")
current_date = get_current_date()
template1 = f"""As an expert concierge in Birmingham, Alabama, known for being a helpful and renowned guide, I am here to assist you on this sunny bright day of {current_date}. Given the current weather conditions and date, I have access to a plethora of information regarding events, places,sports and activities in Birmingham that can enhance your experience.
If you have any questions or need recommendations, feel free to ask. I have a wealth of knowledge of perennial events in Birmingham and can provide detailed information to ensure you make the most of your time here. Remember, I am here to assist you in any way possible.
Now, let me guide you through some of the exciting events happening today in Birmingham, Alabama:
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
Address: >>, Birmingham, AL
Time: >>__
Date: >>__
Description: >>__
If you have any specific preferences or questions about these events or any other inquiries, please feel free to ask. Remember, I am here to ensure you have a memorable and enjoyable experience in Birmingham, AL.
It was my pleasure!
{{context}}
Question: {{question}}
Helpful Answer:"""
template2 = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing the locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick and accurate response.
"It was my pleasure!"
{{context}}
Question: {{question}}
Helpful Answer:"""
QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
# Neo4j setup
graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Avoid pushing the graph documents to Neo4j every time
# Only push the documents once and comment the code below after the initial push
# dataset_name = "Pijush2023/birmindata07312024"
# page_content_column = 'events_description'
# loader = HuggingFaceDatasetLoader(dataset_name, page_content_column)
# data = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
# documents = text_splitter.split_documents(data)
# llm_transformer = LLMGraphTransformer(llm=chat_model)
# graph_documents = llm_transformer.convert_to_graph_documents(documents)
# graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
class Entities(BaseModel):
names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
def retriever_neo4j(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data: {structured_data}")
return structured_data
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
_search_query = RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
| StrOutputParser(),
),
RunnableLambda(lambda x : x["question"]),
)
# template = """Answer the question based only on the following context:
# {context}
# Question: {question}
# Use natural language and be concise.
# Answer:"""
template = f"""As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, I assist visitors in discovering the best that the city has to offer.I also assist the visitors about various sports and activities. Given today's sunny and bright weather on {current_date}, I am well-equipped to provide valuable insights and recommendations without revealing specific locations. I draw upon my extensive knowledge of the area, including perennial events and historical context.
In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, please share, and I'll be glad to help. Remember, keep the question concise for a quick,short ,crisp and accurate response.
"It was my pleasure!"
{{context}}
Question: {{question}}
Helpful Answer:"""
qa_prompt = ChatPromptTemplate.from_template(template)
chain_neo4j = (
RunnableParallel(
{
"context": _search_query | retriever_neo4j,
"question": RunnablePassthrough(),
}
)
| qa_prompt
| chat_model
| StrOutputParser()
)
# def bot(history, choice, tts_choice, retrieval_mode, model_choice):
# if not history:
# return history
# # Select the model
# selected_model = chat_model if model_choice == "GPT-4o" else phi_pipe
# response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
# history[-1][1] = ""
# with concurrent.futures.ThreadPoolExecutor() as executor:
# if tts_choice == "Alpha":
# audio_future = executor.submit(generate_audio_elevenlabs, response)
# elif tts_choice == "Beta":
# audio_future = executor.submit(generate_audio_parler_tts, response)
# # elif tts_choice == "Gamma":
# # audio_future = executor.submit(generate_audio_mars5, response)
# for character in response:
# history[-1][1] += character
# time.sleep(0.05)
# yield history, None
# audio_path = audio_future.result()
# yield history, audio_path
# history.append([response, None])
def bot(history, choice, tts_choice, retrieval_mode, model_choice):
if not history:
return history
# Select the model
selected_model = chat_model if model_choice == "GPT-4o" else phi_pipe
response, addresses = generate_answer(history[-1][0], choice, retrieval_mode, selected_model)
history[-1][1] = ""
with concurrent.futures.ThreadPoolExecutor() as executor:
if tts_choice == "Alpha":
audio_future = executor.submit(generate_audio_elevenlabs, response)
elif tts_choice == "Beta":
audio_future = executor.submit(generate_audio_parler_tts, response)
# elif tts_choice == "Gamma":
# audio_future = executor.submit(generate_audio_mars5, response)
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history, None
audio_path = audio_future.result()
yield history, audio_path
history.append([response, None])
phi_custom_template = """
<|system|>
You are a helpful assistant who provides clear, organized, crisp and conversational responses about an events,concerts,sports and all other activities of Birmingham,Alabama .<|end|>
<|user|>
{context}
Question: {question}<|end|>
<|assistant|>
Sure! Here's the information you requested:
"""
import re
def clean_response(response_text):
# Remove system and user tags
response_text = re.sub(r'<\|system\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
response_text = re.sub(r'<\|user\|>.*?<\|end\|>', '', response_text, flags=re.DOTALL)
response_text = re.sub(r'<\|assistant\|>', '', response_text, flags=re.DOTALL)
# Clean up the text by removing extra whitespace
cleaned_response = response_text.strip()
cleaned_response = re.sub(r'\s+', ' ', cleaned_response)
# Ensure the response is conversational and organized
cleaned_response = cleaned_response.replace('1.', '\n1.').replace('2.', '\n2.').replace('3.', '\n3.').replace('4.', '\n4.').replace('5.', '\n5.')
return cleaned_response
import traceback
def generate_answer(message, choice, retrieval_mode, selected_model):
logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
# Logic for disabling options for Phi-3.5
if selected_model == "Phi-3.5":
choice = None
retrieval_mode = None
try:
# Handle hotel-related queries
if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
logging.debug("Handling hotel-related query")
response = fetch_google_hotels()
logging.debug(f"Hotel response: {response}")
return response, extract_addresses(response)
# Handle restaurant-related queries
if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
logging.debug("Handling restaurant-related query")
response = fetch_yelp_restaurants()
logging.debug(f"Restaurant response: {response}")
return response, extract_addresses(response)
# Handle flight-related queries
if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
logging.debug("Handling flight-related query")
response = fetch_google_flights()
logging.debug(f"Flight response: {response}")
return response, extract_addresses(response)
# Retrieval-based response
if retrieval_mode == "VDB":
logging.debug("Using VDB retrieval mode")
if selected_model == chat_model:
logging.debug("Selected model: GPT-4o")
retriever = gpt_retriever
prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
context = retriever.get_relevant_documents(message)
logging.debug(f"Retrieved context: {context}")
prompt = prompt_template.format(context=context, question=message)
logging.debug(f"Generated prompt: {prompt}")
qa_chain = RetrievalQA.from_chain_type(
llm=chat_model,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template}
)
response = qa_chain({"query": message})
logging.debug(f"GPT-4o response: {response}")
return response['result'], extract_addresses(response['result'])
elif selected_model == phi_pipe:
logging.debug("Selected model: Phi-3.5")
retriever = phi_retriever
context_documents = retriever.get_relevant_documents(message)
context = "\n".join([doc.page_content for doc in context_documents])
logging.debug(f"Retrieved context for Phi-3.5: {context}")
# Use the correct template variable
prompt = phi_custom_template.format(context=context, question=message)
logging.debug(f"Generated Phi-3.5 prompt: {prompt}")
response = selected_model(prompt, **{
"max_new_tokens": 400,
"return_full_text": True,
"temperature": 0.7,
"do_sample": True,
})
if response:
generated_text = response[0]['generated_text']
logging.debug(f"Phi-3.5 Response: {generated_text}")
cleaned_response = clean_response(generated_text)
return cleaned_response, extract_addresses(cleaned_response)
else:
logging.error("Phi-3.5 did not return any response.")
return "No response generated.", []
elif retrieval_mode == "KGF":
logging.debug("Using KGF retrieval mode")
response = chain_neo4j.invoke({"question": message})
logging.debug(f"KGF response: {response}")
return response, extract_addresses(response)
else:
logging.error("Invalid retrieval mode selected.")
return "Invalid retrieval mode selected.", []
except Exception as e:
logging.error(f"Error in generate_answer: {str(e)}")
logging.error(traceback.format_exc())
return "Sorry, I encountered an error while processing your request.", []
def handle_retrieval_mode_change(choice):
if choice == "KGF":
return gr.update(interactive=False), gr.update(interactive=False)
else:
return gr.update(interactive=True), gr.update(interactive=True)
def add_message(history, message):
history.append((message, None))
return history, gr.Textbox(value="", interactive=True, show_label=False)
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def extract_addresses(response):
if not isinstance(response, str):
response = str(response)
address_patterns = [
r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
r'([A-Z].*,\sAL\s\d{5})',
r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
r'(\d{2}.*\sStreets)',
r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
r'([a-zA-Z]\s Birmingham)',
r'([a-zA-Z].*,\sBirmingham,\sAL)',
r'(.*),(Birmingham, AL,USA)$'
r'(^Birmingham,AL$)',
r'((.*)(Stadium|Field),.*,\sAL$)',
r'((.*)(Stadium|Field),.*,\sFL$)',
r'((.*)(Stadium|Field),.*,\sMS$)',
r'((.*)(Stadium|Field),.*,\sAR$)',
r'((.*)(Stadium|Field),.*,\sKY$)',
r'((.*)(Stadium|Field),.*,\sTN$)',
r'((.*)(Stadium|Field),.*,\sLA$)',
r'((.*)(Stadium|Field),.*,\sFL$)'
]
addresses = []
for pattern in address_patterns:
addresses.extend(re.findall(pattern, response))
return addresses
all_addresses = []
def generate_map(location_names):
global all_addresses
all_addresses.extend(location_names)
api_key = os.environ['GOOGLEMAPS_API_KEY']
gmaps = GoogleMapsClient(key=api_key)
m = folium.Map(location=[33.5175, -86.809444], zoom_start=12)
for location_name in all_addresses:
geocode_result = gmaps.geocode(location_name)
if geocode_result:
location = geocode_result[0]['geometry']['location']
folium.Marker(
[location['lat'], location['lng']],
tooltip=f"{geocode_result[0]['formatted_address']}"
).add_to(m)
map_html = m._repr_html_()
return map_html
def fetch_local_news():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
results = response.json().get("news_results", [])
news_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
<style>
.news-item {
font-family: 'Verdana', sans-serif;
color: #333;
background-color: #f0f8ff;
margin-bottom: 15px;
padding: 10px;
border-radius: 5px;
transition: box-shadow 0.3s ease, background-color 0.3s ease;
font-weight: bold;
}
.news-item:hover {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #e6f7ff;
}
.news-item a {
color: #1E90FF;
text-decoration: none;
font-weight: bold;
}
.news-item a:hover {
text-decoration: underline;
}
.news-preview {
position: absolute;
display: none;
border: 1px solid #ccc;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
background-color: white;
z-index: 1000;
max-width: 300px;
padding: 10px;
font-family: 'Verdana', sans-serif;
color: #333;
}
</style>
<script>
function showPreview(event, previewContent) {
var previewBox = document.getElementById('news-preview');
previewBox.innerHTML = previewContent;
previewBox.style.left = event.pageX + 'px';
previewBox.style.top = event.pageY + 'px';
previewBox.style.display = 'block';
}
function hidePreview() {
var previewBox = document.getElementById('news-preview');
previewBox.style.display = 'none';
}
</script>
<div id="news-preview" class="news-preview"></div>
"""
for index, result in enumerate(results[:7]):
title = result.get("title", "No title")
link = result.get("link", "#")
snippet = result.get("snippet", "")
news_html += f"""
<div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
<a href='{link}' target='_blank'>{index + 1}. {title}</a>
<p>{snippet}</p>
</div>
"""
return news_html
else:
return "<p>Failed to fetch local news</p>"
import numpy as np
import torch
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
base_audio_drive = "/data/audio"
#Normal Code with sample rate is 44100 Hz
def transcribe_function(stream, new_chunk):
try:
sr, y = new_chunk[0], new_chunk[1]
except TypeError:
print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
return stream, "", None
y = y.astype(np.float32) / np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
full_text = result.get("text","")
return stream, full_text, result
def update_map_with_response(history):
if not history:
return ""
response = history[-1][1]
addresses = extract_addresses(response)
return generate_map(addresses)
def clear_textbox():
return ""
def show_map_if_details(history, choice):
if choice in ["Details", "Conversational"]:
return gr.update(visible=True), update_map_with_response(history)
else:
return gr.update(visible(False), "")
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
audio_segments = []
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_segments.append(chunk)
temp_audio_path = f.name
# Combine all audio chunks into a single file
combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
combined_audio.export(combined_audio_path, format="mp3")
logging.debug(f"Audio saved to {combined_audio_path}")
return combined_audio_path
else:
logging.error(f"Error generating audio: {response.text}")
return None
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
from transformers import AutoTokenizer
from threading import Thread
repo_id = "parler-tts/parler-tts-mini-v1"
def generate_audio_parler_tts(text):
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
chunk_size_in_s = 0.5
# Initialize the tokenizer and model
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
sampling_rate = parler_model.audio_encoder.config.sampling_rate
frame_rate = parler_model.audio_encoder.config.frame_rate
def generate(text, description, play_steps_in_s=0.5):
play_steps = int(frame_rate * play_steps_in_s)
streamer = ParlerTTSStreamer(parler_model, device=device, play_steps=play_steps)
inputs = parler_tokenizer(description, return_tensors="pt").to(device)
prompt = parler_tokenizer(text, return_tensors="pt").to(device)
generation_kwargs = dict(
input_ids=inputs.input_ids,
prompt_input_ids=prompt.input_ids,
attention_mask=inputs.attention_mask,
prompt_attention_mask=prompt.attention_mask,
streamer=streamer,
do_sample=True,
temperature=1.0,
min_new_tokens=10,
)
thread = Thread(target=parler_model.generate, kwargs=generation_kwargs)
thread.start()
for new_audio in streamer:
if new_audio.shape[0] == 0:
break
yield sampling_rate, new_audio
audio_segments = []
for (sampling_rate, audio_chunk) in generate(text, description, chunk_size_in_s):
audio_segments.append(audio_chunk)
# Combine all the audio chunks into one audio file
combined_audio = np.concatenate(audio_segments)
combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio_stream.wav")
write_wav(combined_audio_path, sampling_rate, combined_audio.astype(np.float32))
logging.debug(f"Audio saved to {combined_audio_path}")
return combined_audio_path
def fetch_local_events():
api_key = os.environ['SERP_API']
url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
response = requests.get(url)
if response.status_code == 200:
events_results = response.json().get("events_results", [])
events_html = """
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
<style>
table {
font-family: 'Verdana', sans-serif;
color: #333;
border-collapse: collapse;
width: 100%;
}
th, td {
border: 1px solid #fff !important;
padding: 8px;
}
th {
background-color: #f2f2f2;
color: #333;
text-align: left;
}
tr:hover {
background-color: #f5f5f5;
}
.event-link {
color: #1E90FF;
text-decoration: none;
}
.event-link:hover {
text-decoration: underline;
}
</style>
<table>
<tr>
<th>Title</th>
<th>Date and Time</th>
<th>Location</th>
</tr>
"""
for event in events_results:
title = event.get("title", "No title")
date_info = event.get("date", {})
date = f"{date_info.get('start_date', '')} {date_info.get('when', '')}".replace("{", "").replace("}", "")
location = event.get("address", "No location")
if isinstance(location, list):
location = " ".join(location)
location = location.replace("[", "").replace("]", "")
link = event.get("link", "#")
events_html += f"""
<tr>
<td><a class='event-link' href='{link}' target='_blank'>{title}</a></td>
<td>{date}</td>
<td>{location}</td>
</tr>
"""
events_html += "</table>"
return events_html
else:
return "<p>Failed to fetch local events</p>"
def get_weather_icon(condition):
condition_map = {
"Clear": "c01d",
"Partly Cloudy": "c02d",
"Cloudy": "c03d",
"Overcast": "c04d",
"Mist": "a01d",
"Patchy rain possible": "r01d",
"Light rain": "r02d",
"Moderate rain": "r03d",
"Heavy rain": "r04d",
"Snow": "s01d",
"Thunderstorm": "t01d",
"Fog": "a05d",
}
return condition_map.get(condition, "c04d")
def fetch_local_weather():
try:
api_key = os.environ['WEATHER_API']
url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
response = requests.get(url)
response.raise_for_status()
jsonData = response.json()
current_conditions = jsonData.get("currentConditions", {})
temp_celsius = current_conditions.get("temp", "N/A")
if temp_celsius != "N/A":
temp_fahrenheit = int((temp_celsius * 9/5) + 32)
else:
temp_fahrenheit = "N/A"
condition = current_conditions.get("conditions", "N/A")
humidity = current_conditions.get("humidity", "N/A")
weather_html = f"""
<div class="weather-theme">
<h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
<div class="weather-content">
<div class="weather-icon">
<img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
</div>
<div class="weather-details">
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
<p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
</div>
</div>
</div>
<style>
.weather-theme {{
animation: backgroundAnimation 10s infinite alternate;
border-radius: 10px;
padding: 10px;
margin-bottom: 15px;
background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
background-size: 400% 400%;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
transition: box-shadow 0.3s ease, background-color 0.3s ease;
}}
.weather-theme:hover {{
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
background-position: 100% 100%;
}}
@keyframes backgroundAnimation {{
0% {{ background-position: 0% 50%; }}
100% {{ background-position: 100% 50%; }}
}}
.weather-content {{
display: flex;
align-items: center;
}}
.weather-icon {{
flex: 1;
}}
.weather-details {{
flex 3;
}}
</style>
"""
return weather_html
except requests.exceptions.RequestException as e:
return f"<p>Failed to fetch local weather: {e}</p>"
def handle_retrieval_mode_change(choice):
if choice == "KGF":
return gr.update(interactive=False), gr.update(interactive=False)
else:
return gr.update(interactive=True), gr.update(interactive=True)
def handle_model_choice_change(selected_model):
if selected_model == "Phi-3.5":
# Disable retrieval mode and select style when Phi-3.5 is selected
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
elif selected_model == "GPT-4o":
# Enable retrieval mode and select style for GPT-4o
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
else:
# Default case: allow interaction
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
def format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet):
return f"""
{name}
- Link: {link}
- Location: {location}
- Contact No: {phone}
- Rating: {rating} stars ({reviews} reviews)
- Snippet: {snippet}
"""
def fetch_yelp_restaurants():
# Introductory prompt for restaurants
intro_prompt = "Here are some of the top-rated restaurants in Birmingham, Alabama. I hope these suggestions help you find the perfect place to enjoy your meal:"
params = {
"engine": "yelp",
"find_desc": "Restaurant",
"find_loc": "Birmingham, AL, USA",
"api_key": os.getenv("SERP_API")
}
search = GoogleSearch(params)
results = search.get_dict()
organic_results = results.get("organic_results", [])
response_text = f"{intro_prompt}\n"
for result in organic_results[:5]: # Limiting to top 5 restaurants
name = result.get("title", "No name")
rating = result.get("rating", "No rating")
reviews = result.get("reviews", "No reviews")
phone = result.get("phone", "Not Available")
snippet = result.get("snippet", "Not Available")
location = f"{name}, Birmingham, AL,USA"
link = result.get("link", "#")
response_text += format_restaurant_hotel_info(name, link, location, phone, rating, reviews, snippet)
return response_text
def format_hotel_info(name, link, location, rate_per_night, total_rate, description, check_in_time, check_out_time, amenities):
return f"""
{name}
- Link: {link}
- Location: {location}
- Rate per Night: {rate_per_night} (Before taxes/fees: {total_rate})
- Check-in Time: {check_in_time}
- Check-out Time: {check_out_time}
- Amenities: {amenities}
- Description: {description}
"""
def fetch_google_hotels(query="Birmingham Hotel", check_in=current_date1, check_out="2024-09-02", adults=2):
# Introductory prompt for hotels
intro_prompt = "Here are some of the best hotels in Birmingham, Alabama, for your stay. Each of these options offers a unique experience, whether you're looking for luxury, comfort, or convenience:"
params = {
"engine": "google_hotels",
"q": query,
"check_in_date": check_in,
"check_out_date": check_out,
"adults": str(adults),
"currency": "USD",
"gl": "us",
"hl": "en",
"api_key": os.getenv("SERP_API")
}
search = GoogleSearch(params)
results = search.get_dict()
hotel_results = results.get("properties", [])
hotel_info = f"{intro_prompt}\n"
for hotel in hotel_results[:5]: # Limiting to top 5 hotels
name = hotel.get('name', 'No name')
description = hotel.get('description', 'No description')
link = hotel.get('link', '#')
check_in_time = hotel.get('check_in_time', 'N/A')
check_out_time = hotel.get('check_out_time', 'N/A')
rate_per_night = hotel.get('rate_per_night', {}).get('lowest', 'N/A')
before_taxes_fees = hotel.get('rate_per_night', {}).get('before_taxes_fees', 'N/A')
total_rate = hotel.get('total_rate', {}).get('lowest', 'N/A')
amenities = ", ".join(hotel.get('amenities', [])) if hotel.get('amenities') else "Not Available"
location = f"{name}, Birmingham, AL,USA"
hotel_info += format_hotel_info(
name,
link,
location,
rate_per_night,
total_rate,
description,
check_in_time,
check_out_time,
amenities
)
return hotel_info
def format_flight_info(flight_number, departure_airport, departure_time, arrival_airport, arrival_time, duration, airplane):
return f"""
Flight {flight_number}
- Departure: {departure_airport} at {departure_time}
- Arrival: {arrival_airport} at {arrival_time}
- Duration: {duration} minutes
- Airplane: {airplane}
"""
def fetch_google_flights(departure_id="JFK", arrival_id="BHM", outbound_date=current_date1, return_date="2024-08-20"):
# Introductory prompt for flights
intro_prompt = "Here are some available flights from JFK to Birmingham, Alabama. These options provide a range of times and durations to fit your travel needs:"
params = {
"engine": "google_flights",
"departure_id": departure_id,
"arrival_id": arrival_id,
"outbound_date": outbound_date,
"return_date": return_date,
"currency": "USD",
"hl": "en",
"api_key": os.getenv("SERP_API")
}
search = GoogleSearch(params)
results = search.get_dict()
# Extract flight details from the results
best_flights = results.get('best_flights', [])
flight_info = f"{intro_prompt}\n"
# Process each flight in the best_flights list
for i, flight in enumerate(best_flights, start=1):
for segment in flight.get('flights', []):
departure_airport = segment.get('departure_airport', {}).get('name', 'Unknown Departure Airport')
departure_time = segment.get('departure_airport', {}).get('time', 'Unknown Time')
arrival_airport = segment.get('arrival_airport', {}).get('name', 'Unknown Arrival Airport')
arrival_time = segment.get('arrival_airport', {}).get('time', 'Unknown Time')
duration = segment.get('duration', 'Unknown Duration')
airplane = segment.get('airplane', 'Unknown Airplane')
# Format the flight segment details
flight_info += format_flight_info(
flight_number=i,
departure_airport=departure_airport,
departure_time=departure_time,
arrival_airport=arrival_airport,
arrival_time=arrival_time,
duration=duration,
airplane=airplane
)
return flight_info
with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
with gr.Row():
with gr.Column():
state = gr.State()
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
model_choice = gr.Dropdown(label="Choose Model", choices=["GPT-4o", "Phi-3.5"], value="GPT-4o")
# Link the dropdown change to handle_model_choice_change
model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta"], value="Alpha")
retriever_button = gr.Button("Retriever")
clear_button = gr.Button("Clear")
clear_button.click(lambda: [None, None], outputs=[chat_input, state])
gr.Markdown("<h1 style='color: red;'>Radar Map</h1>", elem_id="Map-Radar")
location_output = gr.HTML()
audio_output = gr.Audio(interactive=False, autoplay=True)
def stop_audio():
audio_output.stop()
return None
retriever_sequence = (
retriever_button.click(fn=stop_audio, inputs=[], outputs=[audio_output], api_name="Ask_Retriever")
.then(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query")
.then(fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="generate_voice_response")
.then(fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder")
.then(fn=clear_textbox, inputs=[], outputs=[chat_input])
)
chat_input.submit(fn=stop_audio, inputs=[], outputs=[audio_output])
chat_input.submit(fn=add_message, inputs=[chatbot, chat_input], outputs=[chatbot, chat_input], api_name="voice_query").then(
fn=bot, inputs=[chatbot, choice, tts_choice, retrieval_mode, model_choice], outputs=[chatbot, audio_output], api_name="generate_voice_response"
).then(
fn=show_map_if_details, inputs=[chatbot, choice], outputs=[location_output, location_output], api_name="map_finder"
).then(
fn=clear_textbox, inputs=[], outputs=[chat_input]
)
audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy', every=0.1)
audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="voice_query_to_text")
# with gr.Column():
# weather_output = gr.HTML(value=fetch_local_weather())
# news_output = gr.HTML(value=fetch_local_news())
# events_output = gr.HTML(value=fetch_local_events())
demo.queue()
demo.launch(share=True)
|