Pijush2023 commited on
Commit
ef66937
·
verified ·
1 Parent(s): 33a1cf5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -20
app.py CHANGED
@@ -373,23 +373,6 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
373
  # Use GPT-4o with its vector store and template
374
  retriever = gpt_retriever
375
  prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
376
- elif selected_model == phi_pipe:
377
- # Use Phi-3.5 with its vector store and always use template2
378
- retriever = phi_retriever
379
- context = retriever.get_relevant_documents(message)
380
- # Construct a simple, direct prompt for Phi-3.5
381
- prompt = f"""
382
- Based on the following information, provide a concise and well-formatted response without including questions or 'Helpful Answer' sections:
383
-
384
- {context}
385
-
386
- Information:
387
- {message}
388
- """
389
-
390
- if selected_model == chat_model:
391
- # Use GPT-4o with Langchain
392
- prompt_template = QA_CHAIN_PROMPT_2 # Always using template2 for simplicity
393
  context = retriever.get_relevant_documents(message)
394
  prompt = prompt_template.format(context=context, question=message)
395
 
@@ -403,14 +386,32 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
403
  return response['result'], extract_addresses(response['result'])
404
 
405
  elif selected_model == phi_pipe:
406
- # Use Phi-3.5 directly with the simplified prompt
 
 
 
 
 
 
 
 
 
 
 
407
  response = selected_model(prompt, **{
408
  "max_new_tokens": 300,
409
  "return_full_text": False,
410
  "temperature": 0.5,
411
  "do_sample": False,
412
- })[0]['generated_text']
413
- return response, extract_addresses(response)
 
 
 
 
 
 
 
414
 
415
  elif retrieval_mode == "KGF":
416
  response = chain_neo4j.invoke({"question": message})
 
373
  # Use GPT-4o with its vector store and template
374
  retriever = gpt_retriever
375
  prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376
  context = retriever.get_relevant_documents(message)
377
  prompt = prompt_template.format(context=context, question=message)
378
 
 
386
  return response['result'], extract_addresses(response['result'])
387
 
388
  elif selected_model == phi_pipe:
389
+ # Use Phi-3.5 with its vector store and a simplified prompt
390
+ retriever = phi_retriever
391
+ context = retriever.get_relevant_documents(message)
392
+ prompt = f"""
393
+ Here is the information based on the documents provided:
394
+ {context}
395
+
396
+ {message}
397
+ """
398
+
399
+ logging.debug(f"Phi-3.5 Prompt: {prompt}")
400
+
401
  response = selected_model(prompt, **{
402
  "max_new_tokens": 300,
403
  "return_full_text": False,
404
  "temperature": 0.5,
405
  "do_sample": False,
406
+ })
407
+
408
+ if response:
409
+ generated_text = response[0]['generated_text']
410
+ logging.debug(f"Phi-3.5 Response: {generated_text}")
411
+ return generated_text, extract_addresses(generated_text)
412
+ else:
413
+ logging.error("Phi-3.5 did not return any response.")
414
+ return "No response generated.", []
415
 
416
  elif retrieval_mode == "KGF":
417
  response = chain_neo4j.invoke({"question": message})