Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -376,14 +376,23 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
376 |
elif selected_model == phi_pipe:
|
377 |
# Use Phi-3.5 with its vector store and always use template2
|
378 |
retriever = phi_retriever
|
379 |
-
|
|
|
|
|
|
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
384 |
|
385 |
if selected_model == chat_model:
|
386 |
# Use GPT-4o with Langchain
|
|
|
|
|
|
|
|
|
387 |
qa_chain = RetrievalQA.from_chain_type(
|
388 |
llm=chat_model,
|
389 |
chain_type="stuff",
|
@@ -394,7 +403,7 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
394 |
return response['result'], extract_addresses(response['result'])
|
395 |
|
396 |
elif selected_model == phi_pipe:
|
397 |
-
# Use Phi-3.5 directly with the
|
398 |
response = selected_model(prompt, **{
|
399 |
"max_new_tokens": 300,
|
400 |
"return_full_text": False,
|
|
|
376 |
elif selected_model == phi_pipe:
|
377 |
# Use Phi-3.5 with its vector store and always use template2
|
378 |
retriever = phi_retriever
|
379 |
+
context = retriever.get_relevant_documents(message)
|
380 |
+
# Construct a simple, direct prompt for Phi-3.5
|
381 |
+
prompt = f"""
|
382 |
+
Based on the following information, provide a concise and well-formatted response without including questions or 'Helpful Answer' sections:
|
383 |
|
384 |
+
{context}
|
385 |
+
|
386 |
+
Information:
|
387 |
+
{message}
|
388 |
+
"""
|
389 |
|
390 |
if selected_model == chat_model:
|
391 |
# Use GPT-4o with Langchain
|
392 |
+
prompt_template = QA_CHAIN_PROMPT_2 # Always using template2 for simplicity
|
393 |
+
context = retriever.get_relevant_documents(message)
|
394 |
+
prompt = prompt_template.format(context=context, question=message)
|
395 |
+
|
396 |
qa_chain = RetrievalQA.from_chain_type(
|
397 |
llm=chat_model,
|
398 |
chain_type="stuff",
|
|
|
403 |
return response['result'], extract_addresses(response['result'])
|
404 |
|
405 |
elif selected_model == phi_pipe:
|
406 |
+
# Use Phi-3.5 directly with the simplified prompt
|
407 |
response = selected_model(prompt, **{
|
408 |
"max_new_tokens": 300,
|
409 |
"return_full_text": False,
|