Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -529,14 +529,45 @@ def show_map_if_details(history, choice):
|
|
529 |
|
530 |
|
531 |
|
532 |
-
def preprocess_for_tts(text):
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
def generate_audio_elevenlabs(text):
|
539 |
-
XI_API_KEY = os.
|
540 |
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
|
541 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
542 |
headers = {
|
@@ -544,7 +575,7 @@ def generate_audio_elevenlabs(text):
|
|
544 |
"xi-api-key": XI_API_KEY
|
545 |
}
|
546 |
data = {
|
547 |
-
"text":
|
548 |
"model_id": "eleven_multilingual_v2",
|
549 |
"voice_settings": {
|
550 |
"stability": 1.0,
|
@@ -555,17 +586,26 @@ def generate_audio_elevenlabs(text):
|
|
555 |
}
|
556 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
557 |
if response.ok:
|
|
|
558 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
559 |
for chunk in response.iter_content(chunk_size=1024):
|
560 |
if chunk:
|
561 |
f.write(chunk)
|
562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
563 |
else:
|
564 |
logging.error(f"Error generating audio: {response.text}")
|
565 |
return None
|
566 |
|
567 |
|
568 |
-
|
569 |
repo_id = "parler-tts/parler-tts-mini-expresso"
|
570 |
|
571 |
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
|
|
529 |
|
530 |
|
531 |
|
532 |
+
# def preprocess_for_tts(text):
|
533 |
+
# # Remove the word "Link" and any URLs from the text
|
534 |
+
# text = re.sub(r'\bLink\b', '', text) # Remove the word "Link"
|
535 |
+
# text = re.sub(r'http\S+', '', text) # Remove URLs
|
536 |
+
# return text.strip() # Remove any extra spaces
|
537 |
+
|
538 |
+
# def generate_audio_elevenlabs(text):
|
539 |
+
# XI_API_KEY = os.getenv('ELEVENLABS_API')
|
540 |
+
# VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
|
541 |
+
# tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
542 |
+
# headers = {
|
543 |
+
# "Accept": "application/json",
|
544 |
+
# "xi-api-key": XI_API_KEY
|
545 |
+
# }
|
546 |
+
# data = {
|
547 |
+
# "text": preprocess_for_tts(text), # Apply preprocessing before sending to TTS
|
548 |
+
# "model_id": "eleven_multilingual_v2",
|
549 |
+
# "voice_settings": {
|
550 |
+
# "stability": 1.0,
|
551 |
+
# "similarity_boost": 0.0,
|
552 |
+
# "style": 0.60,
|
553 |
+
# "use_speaker_boost": False
|
554 |
+
# }
|
555 |
+
# }
|
556 |
+
# response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
557 |
+
# if response.ok:
|
558 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
559 |
+
# for chunk in response.iter_content(chunk_size=1024):
|
560 |
+
# if chunk:
|
561 |
+
# f.write(chunk)
|
562 |
+
# return f.name
|
563 |
+
# else:
|
564 |
+
# logging.error(f"Error generating audio: {response.text}")
|
565 |
+
# return None
|
566 |
+
|
567 |
+
|
568 |
|
569 |
def generate_audio_elevenlabs(text):
|
570 |
+
XI_API_KEY = os.environ['ELEVENLABS_API']
|
571 |
VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
|
572 |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
|
573 |
headers = {
|
|
|
575 |
"xi-api-key": XI_API_KEY
|
576 |
}
|
577 |
data = {
|
578 |
+
"text": str(text),
|
579 |
"model_id": "eleven_multilingual_v2",
|
580 |
"voice_settings": {
|
581 |
"stability": 1.0,
|
|
|
586 |
}
|
587 |
response = requests.post(tts_url, headers=headers, json=data, stream=True)
|
588 |
if response.ok:
|
589 |
+
audio_segments = []
|
590 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
591 |
for chunk in response.iter_content(chunk_size=1024):
|
592 |
if chunk:
|
593 |
f.write(chunk)
|
594 |
+
audio_segments.append(chunk)
|
595 |
+
temp_audio_path = f.name
|
596 |
+
|
597 |
+
# Combine all audio chunks into a single file
|
598 |
+
combined_audio = AudioSegment.from_file(temp_audio_path, format="mp3")
|
599 |
+
combined_audio_path = os.path.join(tempfile.gettempdir(), "elevenlabs_combined_audio.mp3")
|
600 |
+
combined_audio.export(combined_audio_path, format="mp3")
|
601 |
+
|
602 |
+
logging.debug(f"Audio saved to {combined_audio_path}")
|
603 |
+
return combined_audio_path
|
604 |
else:
|
605 |
logging.error(f"Error generating audio: {response.text}")
|
606 |
return None
|
607 |
|
608 |
|
|
|
609 |
repo_id = "parler-tts/parler-tts-mini-expresso"
|
610 |
|
611 |
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|