Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -105,6 +105,17 @@ phi_pipe = initialize_phi_model()
|
|
105 |
gpt_model = initialize_gpt_model()
|
106 |
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
# Pinecone setup
|
110 |
from pinecone import Pinecone
|
@@ -357,11 +368,12 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
357 |
response = fetch_google_flights()
|
358 |
return response, extract_addresses(response)
|
359 |
|
360 |
-
# Use
|
361 |
if selected_model == phi_pipe:
|
362 |
-
|
|
|
363 |
else:
|
364 |
-
|
365 |
prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
|
366 |
context = retriever.get_relevant_documents(message)
|
367 |
prompt = prompt_template.format(context=context, question=message)
|
@@ -379,8 +391,10 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
379 |
return response['result'], extract_addresses(response['result'])
|
380 |
|
381 |
elif selected_model == phi_pipe:
|
382 |
-
# Use Phi-3.5 directly with the formatted prompt
|
383 |
-
|
|
|
|
|
384 |
"max_new_tokens": 300,
|
385 |
"return_full_text": False,
|
386 |
"temperature": 0.5,
|
@@ -400,7 +414,6 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
400 |
|
401 |
|
402 |
|
403 |
-
|
404 |
# def bot(history, choice, tts_choice, retrieval_mode):
|
405 |
# if not history:
|
406 |
# return history
|
|
|
105 |
gpt_model = initialize_gpt_model()
|
106 |
|
107 |
|
108 |
+
# Existing embeddings and vector store for GPT-4o
|
109 |
+
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
110 |
+
gpt_vectorstore = PineconeVectorStore(index_name="radarfinaldata08192024", embedding=gpt_embeddings)
|
111 |
+
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})
|
112 |
+
|
113 |
+
# New vector store setup for Phi-3.5
|
114 |
+
phi_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
115 |
+
phi_vectorstore = PineconeVectorStore(index_name="phivector08252024", embedding=phi_embeddings)
|
116 |
+
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})
|
117 |
+
|
118 |
+
|
119 |
|
120 |
# Pinecone setup
|
121 |
from pinecone import Pinecone
|
|
|
368 |
response = fetch_google_flights()
|
369 |
return response, extract_addresses(response)
|
370 |
|
371 |
+
# Use different retrievers based on the selected model
|
372 |
if selected_model == phi_pipe:
|
373 |
+
retriever = phi_retriever
|
374 |
+
prompt = f"Based on the provided documents, {message}"
|
375 |
else:
|
376 |
+
retriever = gpt_retriever
|
377 |
prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
|
378 |
context = retriever.get_relevant_documents(message)
|
379 |
prompt = prompt_template.format(context=context, question=message)
|
|
|
391 |
return response['result'], extract_addresses(response['result'])
|
392 |
|
393 |
elif selected_model == phi_pipe:
|
394 |
+
# Use Phi-3.5 directly with the formatted prompt and specific vector store
|
395 |
+
context = retriever.get_relevant_documents(message)
|
396 |
+
full_prompt = f"{context}\n\n{prompt}"
|
397 |
+
response = selected_model(full_prompt, **{
|
398 |
"max_new_tokens": 300,
|
399 |
"return_full_text": False,
|
400 |
"temperature": 0.5,
|
|
|
414 |
|
415 |
|
416 |
|
|
|
417 |
# def bot(history, choice, tts_choice, retrieval_mode):
|
418 |
# if not history:
|
419 |
# return history
|