Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -368,31 +368,20 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
368 |
response = fetch_google_flights()
|
369 |
return response, extract_addresses(response)
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
Name: [Event Name]
|
383 |
-
Location: [Location]
|
384 |
-
Date and Time: [Date and Time]
|
385 |
-
Description: [Event Description]
|
386 |
-
|
387 |
-
Question: {message}
|
388 |
-
"""
|
389 |
-
else:
|
390 |
-
retriever = gpt_retriever
|
391 |
-
prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
|
392 |
context = retriever.get_relevant_documents(message)
|
393 |
prompt = prompt_template.format(context=context, question=message)
|
394 |
|
395 |
-
if retrieval_mode == "VDB":
|
396 |
if selected_model == chat_model:
|
397 |
# Use GPT-4o with Langchain
|
398 |
qa_chain = RetrievalQA.from_chain_type(
|
@@ -425,7 +414,6 @@ def generate_answer(message, choice, retrieval_mode, selected_model):
|
|
425 |
return "Sorry, I encountered an error while processing your request.", []
|
426 |
|
427 |
|
428 |
-
|
429 |
# def bot(history, choice, tts_choice, retrieval_mode):
|
430 |
# if not history:
|
431 |
# return history
|
|
|
368 |
response = fetch_google_flights()
|
369 |
return response, extract_addresses(response)
|
370 |
|
371 |
+
if retrieval_mode == "VDB":
|
372 |
+
if selected_model == chat_model:
|
373 |
+
# Use GPT-4o with its vector store and template
|
374 |
+
retriever = gpt_retriever
|
375 |
+
prompt_template = QA_CHAIN_PROMPT_1 if choice == "Details" else QA_CHAIN_PROMPT_2
|
376 |
+
elif selected_model == phi_pipe:
|
377 |
+
# Use Phi-3.5 with its vector store and always use template2
|
378 |
+
retriever = phi_retriever
|
379 |
+
prompt_template = QA_CHAIN_PROMPT_2
|
380 |
+
|
381 |
+
# Retrieve context and construct the prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
context = retriever.get_relevant_documents(message)
|
383 |
prompt = prompt_template.format(context=context, question=message)
|
384 |
|
|
|
385 |
if selected_model == chat_model:
|
386 |
# Use GPT-4o with Langchain
|
387 |
qa_chain = RetrievalQA.from_chain_type(
|
|
|
414 |
return "Sorry, I encountered an error while processing your request.", []
|
415 |
|
416 |
|
|
|
417 |
# def bot(history, choice, tts_choice, retrieval_mode):
|
418 |
# if not history:
|
419 |
# return history
|