Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -45,6 +45,17 @@ from langchain_core.output_parsers import StrOutputParser
|
|
45 |
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
|
46 |
from serpapi.google_search import GoogleSearch
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
#API AutoDate Fix Up
|
49 |
def get_current_date1():
|
50 |
return datetime.now().strftime("%Y-%m-%d")
|
@@ -75,7 +86,7 @@ embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
|
75 |
from pinecone import Pinecone
|
76 |
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
|
77 |
|
78 |
-
index_name = "
|
79 |
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
80 |
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
|
81 |
|
@@ -133,9 +144,9 @@ QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], temp
|
|
133 |
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
|
134 |
|
135 |
# Neo4j setup
|
136 |
-
graph = Neo4jGraph(url="neo4j+s://
|
137 |
username="neo4j",
|
138 |
-
password="
|
139 |
)
|
140 |
# Avoid pushing the graph documents to Neo4j every time
|
141 |
# Only push the documents once and comment the code below after the initial push
|
@@ -335,7 +346,7 @@ def bot(history, choice, tts_choice, retrieval_mode):
|
|
335 |
|
336 |
def add_message(history, message):
|
337 |
history.append((message, None))
|
338 |
-
return history, gr.Textbox(value="", interactive=True, placeholder="Ask More
|
339 |
|
340 |
def print_like_dislike(x: gr.LikeData):
|
341 |
print(x.index, x.value, x.liked)
|
@@ -573,14 +584,13 @@ def generate_audio_elevenlabs(text):
|
|
573 |
return None
|
574 |
|
575 |
|
576 |
-
repo_id = "parler-tts/parler-tts-mini-
|
577 |
|
578 |
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
579 |
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
580 |
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
581 |
|
582 |
SAMPLE_RATE = parler_feature_extractor.sampling_rate
|
583 |
-
SEED = 42
|
584 |
|
585 |
def preprocess(text):
|
586 |
number_normalizer = EnglishNumberNormalizer()
|
@@ -597,7 +607,7 @@ def preprocess(text):
|
|
597 |
abbreviations = re.findall(abbreviations_pattern, text)
|
598 |
for abv in abbreviations:
|
599 |
if abv in text:
|
600 |
-
text
|
601 |
return text
|
602 |
|
603 |
def chunk_text(text, max_length=250):
|
@@ -621,20 +631,19 @@ def chunk_text(text, max_length=250):
|
|
621 |
return chunks
|
622 |
|
623 |
def generate_audio_parler_tts(text):
|
624 |
-
description = "
|
625 |
chunks = chunk_text(preprocess(text))
|
626 |
audio_segments = []
|
627 |
|
628 |
for chunk in chunks:
|
629 |
-
|
630 |
-
|
631 |
|
632 |
-
|
633 |
-
generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
|
634 |
audio_arr = generation.cpu().numpy().squeeze()
|
635 |
|
636 |
temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
|
637 |
-
|
638 |
audio_segments.append(AudioSegment.from_wav(temp_audio_path))
|
639 |
|
640 |
combined_audio = sum(audio_segments)
|
@@ -643,6 +652,7 @@ def generate_audio_parler_tts(text):
|
|
643 |
|
644 |
logging.debug(f"Audio saved to {combined_audio_path}")
|
645 |
return combined_audio_path
|
|
|
646 |
|
647 |
# Load the MARS5 model
|
648 |
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
|
@@ -1055,7 +1065,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1055 |
|
1056 |
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
|
1057 |
|
1058 |
-
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="Hey Radar...!!")
|
1059 |
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
|
1060 |
retriever_button = gr.Button("Retriever")
|
1061 |
|
@@ -1121,4 +1131,3 @@ demo.launch(share=True)
|
|
1121 |
|
1122 |
|
1123 |
|
1124 |
-
|
|
|
45 |
from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
|
46 |
from serpapi.google_search import GoogleSearch
|
47 |
|
48 |
+
#Parler TTS v1 Modules
|
49 |
+
|
50 |
+
import os
|
51 |
+
import re
|
52 |
+
import tempfile
|
53 |
+
import soundfile as sf
|
54 |
+
from string import punctuation
|
55 |
+
from pydub import AudioSegment
|
56 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor
|
57 |
+
|
58 |
+
|
59 |
#API AutoDate Fix Up
|
60 |
def get_current_date1():
|
61 |
return datetime.now().strftime("%Y-%m-%d")
|
|
|
86 |
from pinecone import Pinecone
|
87 |
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
|
88 |
|
89 |
+
index_name = "radardata08172024"
|
90 |
vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
|
91 |
retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
|
92 |
|
|
|
144 |
QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
|
145 |
|
146 |
# Neo4j setup
|
147 |
+
graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io",
|
148 |
username="neo4j",
|
149 |
+
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
|
150 |
)
|
151 |
# Avoid pushing the graph documents to Neo4j every time
|
152 |
# Only push the documents once and comment the code below after the initial push
|
|
|
346 |
|
347 |
def add_message(history, message):
|
348 |
history.append((message, None))
|
349 |
+
return history, gr.Textbox(value="", interactive=True, placeholder="Ask More Questions...", show_label=False)
|
350 |
|
351 |
def print_like_dislike(x: gr.LikeData):
|
352 |
print(x.index, x.value, x.liked)
|
|
|
584 |
return None
|
585 |
|
586 |
|
587 |
+
repo_id = "parler-tts/parler-tts-mini-v1"
|
588 |
|
589 |
parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
|
590 |
parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
591 |
parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
592 |
|
593 |
SAMPLE_RATE = parler_feature_extractor.sampling_rate
|
|
|
594 |
|
595 |
def preprocess(text):
|
596 |
number_normalizer = EnglishNumberNormalizer()
|
|
|
607 |
abbreviations = re.findall(abbreviations_pattern, text)
|
608 |
for abv in abbreviations:
|
609 |
if abv in text:
|
610 |
+
text = text.replace(abv, separate_abb(abv))
|
611 |
return text
|
612 |
|
613 |
def chunk_text(text, max_length=250):
|
|
|
631 |
return chunks
|
632 |
|
633 |
def generate_audio_parler_tts(text):
|
634 |
+
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
|
635 |
chunks = chunk_text(preprocess(text))
|
636 |
audio_segments = []
|
637 |
|
638 |
for chunk in chunks:
|
639 |
+
input_ids = parler_tokenizer(description, return_tensors="pt").input_ids.to(device)
|
640 |
+
prompt_input_ids = parler_tokenizer(chunk, return_tensors="pt").input_ids.to(device)
|
641 |
|
642 |
+
generation = parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
|
|
643 |
audio_arr = generation.cpu().numpy().squeeze()
|
644 |
|
645 |
temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
|
646 |
+
sf.write(temp_audio_path, audio_arr, parler_model.config.sampling_rate)
|
647 |
audio_segments.append(AudioSegment.from_wav(temp_audio_path))
|
648 |
|
649 |
combined_audio = sum(audio_segments)
|
|
|
652 |
|
653 |
logging.debug(f"Audio saved to {combined_audio_path}")
|
654 |
return combined_audio_path
|
655 |
+
|
656 |
|
657 |
# Load the MARS5 model
|
658 |
mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
|
|
|
1065 |
|
1066 |
gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
|
1067 |
|
1068 |
+
chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
|
1069 |
tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
|
1070 |
retriever_button = gr.Button("Retriever")
|
1071 |
|
|
|
1131 |
|
1132 |
|
1133 |
|
|