Pijush2023 commited on
Commit
4283557
·
verified ·
1 Parent(s): 84f1959

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -15
app.py CHANGED
@@ -45,6 +45,17 @@ from langchain_core.output_parsers import StrOutputParser
45
  from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
46
  from serpapi.google_search import GoogleSearch
47
 
 
 
 
 
 
 
 
 
 
 
 
48
  #API AutoDate Fix Up
49
  def get_current_date1():
50
  return datetime.now().strftime("%Y-%m-%d")
@@ -75,7 +86,7 @@ embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
75
  from pinecone import Pinecone
76
  pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
77
 
78
- index_name = "radardata08152024"
79
  vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
80
  retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
81
 
@@ -133,9 +144,9 @@ QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], temp
133
  QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
134
 
135
  # Neo4j setup
136
- graph = Neo4jGraph(url="neo4j+s://bcbd420c.databases.neo4j.io",
137
  username="neo4j",
138
- password="znKCoED1qIoYrkmZHqVY3sGWxmUvSdI8EqG5hRNlROI"
139
  )
140
  # Avoid pushing the graph documents to Neo4j every time
141
  # Only push the documents once and comment the code below after the initial push
@@ -335,7 +346,7 @@ def bot(history, choice, tts_choice, retrieval_mode):
335
 
336
  def add_message(history, message):
337
  history.append((message, None))
338
- return history, gr.Textbox(value="", interactive=True, placeholder="Ask More Question...", show_label=False)
339
 
340
  def print_like_dislike(x: gr.LikeData):
341
  print(x.index, x.value, x.liked)
@@ -573,14 +584,13 @@ def generate_audio_elevenlabs(text):
573
  return None
574
 
575
 
576
- repo_id = "parler-tts/parler-tts-mini-expresso"
577
 
578
  parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
579
  parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
580
  parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
581
 
582
  SAMPLE_RATE = parler_feature_extractor.sampling_rate
583
- SEED = 42
584
 
585
  def preprocess(text):
586
  number_normalizer = EnglishNumberNormalizer()
@@ -597,7 +607,7 @@ def preprocess(text):
597
  abbreviations = re.findall(abbreviations_pattern, text)
598
  for abv in abbreviations:
599
  if abv in text:
600
- text is text.replace(abv, separate_abb(abv))
601
  return text
602
 
603
  def chunk_text(text, max_length=250):
@@ -621,20 +631,19 @@ def chunk_text(text, max_length=250):
621
  return chunks
622
 
623
  def generate_audio_parler_tts(text):
624
- description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
625
  chunks = chunk_text(preprocess(text))
626
  audio_segments = []
627
 
628
  for chunk in chunks:
629
- inputs = parler_tokenizer(description, return_tensors="pt").to(device)
630
- prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
631
 
632
- set_seed(SEED)
633
- generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
634
  audio_arr = generation.cpu().numpy().squeeze()
635
 
636
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
637
- write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
638
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
639
 
640
  combined_audio = sum(audio_segments)
@@ -643,6 +652,7 @@ def generate_audio_parler_tts(text):
643
 
644
  logging.debug(f"Audio saved to {combined_audio_path}")
645
  return combined_audio_path
 
646
 
647
  # Load the MARS5 model
648
  mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
@@ -1055,7 +1065,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1055
 
1056
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1057
 
1058
- chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!",placeholder="Hey Radar...!!")
1059
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
1060
  retriever_button = gr.Button("Retriever")
1061
 
@@ -1121,4 +1131,3 @@ demo.launch(share=True)
1121
 
1122
 
1123
 
1124
-
 
45
  from langchain_core.runnables import RunnableBranch, RunnableLambda, RunnableParallel, RunnablePassthrough
46
  from serpapi.google_search import GoogleSearch
47
 
48
+ #Parler TTS v1 Modules
49
+
50
+ import os
51
+ import re
52
+ import tempfile
53
+ import soundfile as sf
54
+ from string import punctuation
55
+ from pydub import AudioSegment
56
+ from transformers import AutoTokenizer, AutoFeatureExtractor
57
+
58
+
59
  #API AutoDate Fix Up
60
  def get_current_date1():
61
  return datetime.now().strftime("%Y-%m-%d")
 
86
  from pinecone import Pinecone
87
  pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
88
 
89
+ index_name = "radardata08172024"
90
  vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
91
  retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
92
 
 
144
  QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
145
 
146
  # Neo4j setup
147
+ graph = Neo4jGraph(url="neo4j+s://6457770f.databases.neo4j.io",
148
  username="neo4j",
149
+ password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
150
  )
151
  # Avoid pushing the graph documents to Neo4j every time
152
  # Only push the documents once and comment the code below after the initial push
 
346
 
347
  def add_message(history, message):
348
  history.append((message, None))
349
+ return history, gr.Textbox(value="", interactive=True, placeholder="Ask More Questions...", show_label=False)
350
 
351
  def print_like_dislike(x: gr.LikeData):
352
  print(x.index, x.value, x.liked)
 
584
  return None
585
 
586
 
587
+ repo_id = "parler-tts/parler-tts-mini-v1"
588
 
589
  parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
590
  parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
591
  parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
592
 
593
  SAMPLE_RATE = parler_feature_extractor.sampling_rate
 
594
 
595
  def preprocess(text):
596
  number_normalizer = EnglishNumberNormalizer()
 
607
  abbreviations = re.findall(abbreviations_pattern, text)
608
  for abv in abbreviations:
609
  if abv in text:
610
+ text = text.replace(abv, separate_abb(abv))
611
  return text
612
 
613
  def chunk_text(text, max_length=250):
 
631
  return chunks
632
 
633
  def generate_audio_parler_tts(text):
634
+ description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
635
  chunks = chunk_text(preprocess(text))
636
  audio_segments = []
637
 
638
  for chunk in chunks:
639
+ input_ids = parler_tokenizer(description, return_tensors="pt").input_ids.to(device)
640
+ prompt_input_ids = parler_tokenizer(chunk, return_tensors="pt").input_ids.to(device)
641
 
642
+ generation = parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
 
643
  audio_arr = generation.cpu().numpy().squeeze()
644
 
645
  temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
646
+ sf.write(temp_audio_path, audio_arr, parler_model.config.sampling_rate)
647
  audio_segments.append(AudioSegment.from_wav(temp_audio_path))
648
 
649
  combined_audio = sum(audio_segments)
 
652
 
653
  logging.debug(f"Audio saved to {combined_audio_path}")
654
  return combined_audio_path
655
+
656
 
657
  # Load the MARS5 model
658
  mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
 
1065
 
1066
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1067
 
1068
+ chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!", placeholder="Hey Radar...!!")
1069
  tts_choice = gr.Radio(label="Select TTS System", choices=["Alpha", "Beta", "Gamma"], value="Alpha")
1070
  retriever_button = gr.Button("Retriever")
1071
 
 
1131
 
1132
 
1133