Pijush2023 commited on
Commit
86bd1dc
·
verified ·
1 Parent(s): c7cfbcf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -131,19 +131,19 @@ graph = Neo4jGraph(
131
  # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
132
  # documents = text_splitter.split_documents(data)
133
 
134
- # llm_transformer = LLMGraphTransformer(llm=llm)
135
  # graph_documents = llm_transformer.convert_to_graph_documents(documents)
136
  # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
137
 
138
  class Entities(BaseModel):
139
  names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
140
 
141
- prompt = ChatPromptTemplate.from_messages([
142
  ("system", "You are extracting organization and person entities from the text."),
143
  ("human", "Use the given format to extract information from the following input: {question}"),
144
  ])
145
 
146
- entity_chain = prompt | llm.with_structured_output(Entities)
147
 
148
  def remove_lucene_chars(input: str) -> str:
149
  return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
@@ -224,7 +224,7 @@ Question: {question}
224
  Use natural language and be concise.
225
  Answer:"""
226
 
227
- prompt = ChatPromptTemplate.from_template(template)
228
 
229
  chain_neo4j = (
230
  RunnableParallel(
@@ -233,8 +233,8 @@ chain_neo4j = (
233
  "question": RunnablePassthrough(),
234
  }
235
  )
236
- | prompt
237
- | llm
238
  | StrOutputParser()
239
  )
240
 
@@ -338,7 +338,7 @@ def fetch_local_news():
338
  api_key = os.environ['SERP_API']
339
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
340
  response = requests.get(url)
341
- if response.status_code == 200:
342
  results = response.json().get("news_results", [])
343
  news_html = """
344
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
@@ -632,7 +632,7 @@ def fetch_local_events():
632
  api_key = os.environ['SERP_API']
633
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
634
  response = requests.get(url)
635
- if response.status_code == 200:
636
  events_results = response.json().get("events_results", [])
637
  events_html = """
638
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
 
131
  # text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=50)
132
  # documents = text_splitter.split_documents(data)
133
 
134
+ # llm_transformer = LLMGraphTransformer(llm=chat_model)
135
  # graph_documents = llm_transformer.convert_to_graph_documents(documents)
136
  # graph.add_graph_documents(graph_documents, baseEntityLabel=True, include_source=True)
137
 
138
  class Entities(BaseModel):
139
  names: list[str] = Field(..., description="All the person, organization, or business entities that appear in the text")
140
 
141
+ entity_prompt = ChatPromptTemplate.from_messages([
142
  ("system", "You are extracting organization and person entities from the text."),
143
  ("human", "Use the given format to extract information from the following input: {question}"),
144
  ])
145
 
146
+ entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
147
 
148
  def remove_lucene_chars(input: str) -> str:
149
  return input.translate(str.maketrans({"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
 
224
  Use natural language and be concise.
225
  Answer:"""
226
 
227
+ qa_prompt = ChatPromptTemplate.from_template(template)
228
 
229
  chain_neo4j = (
230
  RunnableParallel(
 
233
  "question": RunnablePassthrough(),
234
  }
235
  )
236
+ | qa_prompt
237
+ | chat_model
238
  | StrOutputParser()
239
  )
240
 
 
338
  api_key = os.environ['SERP_API']
339
  url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
340
  response = requests.get(url)
341
+ if response.status_code == 200):
342
  results = response.json().get("news_results", [])
343
  news_html = """
344
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
 
632
  api_key = os.environ['SERP_API']
633
  url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
634
  response = requests.get(url)
635
+ if response.status_code == 200):
636
  events_results = response.json().get("events_results", [])
637
  events_html = """
638
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>