File size: 4,236 Bytes
c513221
109adde
9da79fd
5e2c7ed
 
 
30d89b1
b85438c
30d89b1
 
 
 
86743ba
d9a5760
3b7350e
 
d9a5760
3b7350e
 
30d89b1
3b7350e
 
 
 
 
 
 
109adde
3b7350e
 
109adde
3b7350e
 
 
 
109adde
d26a101
cfeca25
109adde
690f094
109adde
30d89b1
690f094
 
c7f120b
3a80045
690f094
 
bdf16c0
30d89b1
 
 
 
 
 
 
d9a5760
30d89b1
d9a5760
c7f120b
cfeca25
c7f120b
690f094
081cd9c
5e2c7ed
a04441d
109adde
30d89b1
109adde
 
30d89b1
109adde
 
 
 
30d89b1
109adde
 
 
081cd9c
30d89b1
690f094
bdf16c0
690f094
 
 
 
 
bdf16c0
 
 
f466dd9
c7f120b
c14304d
c7f120b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import asyncio
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
from concurrent.futures import ThreadPoolExecutor

# Load the model once outside of the function
print("Loading the model...")
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
print("Model loaded successfully.")

def generate_image(prompt, prompt_name):
    try:
        print(f"Generating response for {prompt_name} with prompt: {prompt}")
        output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
        print(f"Output for {prompt_name}: {output}")

        # Check if the model returned images
        if isinstance(output.images, list) and len(output.images) > 0:
            image = output.images[0]
            buffered = BytesIO()
            try:
                image.save(buffered, format="JPEG")
                image_bytes = buffered.getvalue()
                print(f"Image bytes length for {prompt_name}: {len(image_bytes)}")
                return image_bytes
            except Exception as e:
                print(f"Error saving image for {prompt_name}: {e}")
                return None
        else:
            raise Exception(f"No images returned by the model for {prompt_name}.")
    except Exception as e:
        print(f"Error generating image for {prompt_name}: {e}")
        return None

async def queue_api_calls(sentence_mapping, character_dict, selected_style):
    print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
    prompts = []

    # Generate prompts for each paragraph
    for paragraph_number, sentences in sentence_mapping.items():
        combined_sentence = " ".join(sentences)
        print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
        prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
        prompts.append((paragraph_number, prompt))
        print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")

    # Set max_workers to the total number of prompts
    max_workers = len(prompts)

    # Generate images for each prompt in parallel using threading
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        loop = asyncio.get_running_loop()
        tasks = [loop.run_in_executor(executor, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
        print("Tasks created for image generation.")
        responses = await asyncio.gather(*tasks)
        print("Responses received from image generation tasks.")

    images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
    print(f"Images generated: {images}")
    return images

def process_prompt(sentence_mapping, character_dict, selected_style):
    print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
    try:
        # See if there is a loop already running. If there is, reuse it.
        loop = asyncio.get_running_loop()
    except RuntimeError:
        # Create new event loop if one is not running
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
    print("Event loop created.")

    # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
    cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
    print(f"process_prompt completed with return value: {cmpt_return}")
    return cmpt_return

# Gradio interface with high concurrency limit
gradio_interface = gr.Interface(
    fn=process_prompt,
    inputs=[
        gr.JSON(label="Sentence Mapping"),
        gr.JSON(label="Character Dict"),
        gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
    ],
    outputs="json"
)

if __name__ == "__main__":
    print("Launching Gradio interface...")
    gradio_interface.launch()
    print("Gradio interface launched.")