Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,21 +4,20 @@ from generate_prompts import generate_prompt
|
|
| 4 |
from diffusers import AutoPipelineForText2Image
|
| 5 |
from io import BytesIO
|
| 6 |
import gradio as gr
|
| 7 |
-
from
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
return model
|
| 14 |
|
| 15 |
def generate_image(prompt, prompt_name):
|
| 16 |
try:
|
| 17 |
-
model = load_model()
|
| 18 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
| 19 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
| 20 |
print(f"Output for {prompt_name}: {output}")
|
| 21 |
|
|
|
|
| 22 |
if isinstance(output.images, list) and len(output.images) > 0:
|
| 23 |
image = output.images[0]
|
| 24 |
buffered = BytesIO()
|
|
@@ -40,6 +39,7 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
| 40 |
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
| 41 |
prompts = []
|
| 42 |
|
|
|
|
| 43 |
for paragraph_number, sentences in sentence_mapping.items():
|
| 44 |
combined_sentence = " ".join(sentences)
|
| 45 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
|
@@ -47,10 +47,15 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
| 47 |
prompts.append((paragraph_number, prompt))
|
| 48 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
print("Tasks created for image generation.")
|
| 53 |
-
responses =
|
| 54 |
print("Responses received from image generation tasks.")
|
| 55 |
|
| 56 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
|
@@ -60,16 +65,20 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
|
|
| 60 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
| 61 |
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
| 62 |
try:
|
|
|
|
| 63 |
loop = asyncio.get_running_loop()
|
| 64 |
except RuntimeError:
|
|
|
|
| 65 |
loop = asyncio.new_event_loop()
|
| 66 |
asyncio.set_event_loop(loop)
|
| 67 |
print("Event loop created.")
|
| 68 |
|
|
|
|
| 69 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
| 70 |
print(f"process_prompt completed with return value: {cmpt_return}")
|
| 71 |
return cmpt_return
|
| 72 |
|
|
|
|
| 73 |
gradio_interface = gr.Interface(
|
| 74 |
fn=process_prompt,
|
| 75 |
inputs=[
|
|
|
|
| 4 |
from diffusers import AutoPipelineForText2Image
|
| 5 |
from io import BytesIO
|
| 6 |
import gradio as gr
|
| 7 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
|
| 9 |
+
# Load the model once outside of the function
|
| 10 |
+
print("Loading the model...")
|
| 11 |
+
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
| 12 |
+
print("Model loaded successfully.")
|
|
|
|
| 13 |
|
| 14 |
def generate_image(prompt, prompt_name):
|
| 15 |
try:
|
|
|
|
| 16 |
print(f"Generating response for {prompt_name} with prompt: {prompt}")
|
| 17 |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
| 18 |
print(f"Output for {prompt_name}: {output}")
|
| 19 |
|
| 20 |
+
# Check if the model returned images
|
| 21 |
if isinstance(output.images, list) and len(output.images) > 0:
|
| 22 |
image = output.images[0]
|
| 23 |
buffered = BytesIO()
|
|
|
|
| 39 |
print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
| 40 |
prompts = []
|
| 41 |
|
| 42 |
+
# Generate prompts for each paragraph
|
| 43 |
for paragraph_number, sentences in sentence_mapping.items():
|
| 44 |
combined_sentence = " ".join(sentences)
|
| 45 |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
|
|
|
|
| 47 |
prompts.append((paragraph_number, prompt))
|
| 48 |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
| 49 |
|
| 50 |
+
# Set max_workers to the total number of prompts
|
| 51 |
+
max_workers = len(prompts)
|
| 52 |
+
|
| 53 |
+
# Generate images for each prompt in parallel using threading
|
| 54 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 55 |
+
loop = asyncio.get_running_loop()
|
| 56 |
+
tasks = [loop.run_in_executor(executor, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
|
| 57 |
print("Tasks created for image generation.")
|
| 58 |
+
responses = await asyncio.gather(*tasks)
|
| 59 |
print("Responses received from image generation tasks.")
|
| 60 |
|
| 61 |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
|
|
|
|
| 65 |
def process_prompt(sentence_mapping, character_dict, selected_style):
|
| 66 |
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
|
| 67 |
try:
|
| 68 |
+
# See if there is a loop already running. If there is, reuse it.
|
| 69 |
loop = asyncio.get_running_loop()
|
| 70 |
except RuntimeError:
|
| 71 |
+
# Create new event loop if one is not running
|
| 72 |
loop = asyncio.new_event_loop()
|
| 73 |
asyncio.set_event_loop(loop)
|
| 74 |
print("Event loop created.")
|
| 75 |
|
| 76 |
+
# This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
|
| 77 |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
|
| 78 |
print(f"process_prompt completed with return value: {cmpt_return}")
|
| 79 |
return cmpt_return
|
| 80 |
|
| 81 |
+
# Gradio interface with high concurrency limit
|
| 82 |
gradio_interface = gr.Interface(
|
| 83 |
fn=process_prompt,
|
| 84 |
inputs=[
|