RanM commited on
Commit
d9a5760
·
verified ·
1 Parent(s): cfeca25

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -17
app.py CHANGED
@@ -4,19 +4,21 @@ from generate_prompts import generate_prompt
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
 
7
 
8
- # Load the model once outside of the function
9
- print("Loading the model...")
10
- model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
11
- print("Model loaded successfully.")
 
12
 
13
- async def generate_image(prompt, prompt_name):
14
  try:
 
15
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
16
- output = await asyncio.to_thread(model, prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
17
  print(f"Output for {prompt_name}: {output}")
18
 
19
- # Check if the model returned images
20
  if isinstance(output.images, list) and len(output.images) > 0:
21
  image = output.images[0]
22
  buffered = BytesIO()
@@ -38,7 +40,6 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
38
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
39
  prompts = []
40
 
41
- # Generate prompts for each paragraph
42
  for paragraph_number, sentences in sentence_mapping.items():
43
  combined_sentence = " ".join(sentences)
44
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
@@ -46,11 +47,11 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
46
  prompts.append((paragraph_number, prompt))
47
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
48
 
49
- # Generate images for each prompt in parallel using asyncio
50
- tasks = [generate_image(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
51
- print("Tasks created for image generation.")
52
- responses = await asyncio.gather(*tasks)
53
- print("Responses received from image generation tasks.")
54
 
55
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
56
  print(f"Images generated: {images}")
@@ -59,20 +60,16 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
59
  def process_prompt(sentence_mapping, character_dict, selected_style):
60
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
61
  try:
62
- # See if there is a loop already running. If there is, reuse it.
63
  loop = asyncio.get_running_loop()
64
  except RuntimeError:
65
- # Create new event loop if one is not running
66
  loop = asyncio.new_event_loop()
67
  asyncio.set_event_loop(loop)
68
  print("Event loop created.")
69
 
70
- # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
71
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
72
  print(f"process_prompt completed with return value: {cmpt_return}")
73
  return cmpt_return
74
 
75
- # Gradio interface with high concurrency limit
76
  gradio_interface = gr.Interface(
77
  fn=process_prompt,
78
  inputs=[
 
4
  from diffusers import AutoPipelineForText2Image
5
  from io import BytesIO
6
  import gradio as gr
7
+ from multiprocessing import Pool, current_process
8
 
9
+ def load_model():
10
+ print(f"Loading model in process {current_process().name}")
11
+ model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
12
+ print(f"Model loaded in process {current_process().name}")
13
+ return model
14
 
15
+ def generate_image(prompt, prompt_name):
16
  try:
17
+ model = load_model()
18
  print(f"Generating response for {prompt_name} with prompt: {prompt}")
19
+ output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
20
  print(f"Output for {prompt_name}: {output}")
21
 
 
22
  if isinstance(output.images, list) and len(output.images) > 0:
23
  image = output.images[0]
24
  buffered = BytesIO()
 
40
  print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
41
  prompts = []
42
 
 
43
  for paragraph_number, sentences in sentence_mapping.items():
44
  combined_sentence = " ".join(sentences)
45
  print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
 
47
  prompts.append((paragraph_number, prompt))
48
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
49
 
50
+ with Pool() as pool:
51
+ tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
52
+ print("Tasks created for image generation.")
53
+ responses = pool.starmap(generate_image, tasks)
54
+ print("Responses received from image generation tasks.")
55
 
56
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
57
  print(f"Images generated: {images}")
 
60
  def process_prompt(sentence_mapping, character_dict, selected_style):
61
  print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
62
  try:
 
63
  loop = asyncio.get_running_loop()
64
  except RuntimeError:
 
65
  loop = asyncio.new_event_loop()
66
  asyncio.set_event_loop(loop)
67
  print("Event loop created.")
68
 
 
69
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
70
  print(f"process_prompt completed with return value: {cmpt_return}")
71
  return cmpt_return
72
 
 
73
  gradio_interface = gr.Interface(
74
  fn=process_prompt,
75
  inputs=[