RanM commited on
Commit
c7f120b
·
verified ·
1 Parent(s): 4fa4510

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -4
app.py CHANGED
@@ -6,12 +6,15 @@ from io import BytesIO
6
  import gradio as gr
7
 
8
  # Load the model once outside of the function
 
9
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
 
10
 
11
  def generate_image(prompt, prompt_name):
12
  try:
13
- print(f"Generating response for {prompt_name}")
14
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
 
15
 
16
  # Check if the model returned images
17
  if isinstance(output.images, list) and len(output.images) > 0:
@@ -32,13 +35,13 @@ def generate_image(prompt, prompt_name):
32
  return None
33
 
34
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
35
- print(f'sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}')
36
  prompts = []
37
 
38
  # Generate prompts for each paragraph
39
  for paragraph_number, sentences in sentence_mapping.items():
40
  combined_sentence = " ".join(sentences)
41
- print(f'combined_sentence: {combined_sentence}, character_dict: {character_dict}, selected_style: {selected_style}')
42
  prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
43
  prompts.append((paragraph_number, prompt))
44
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
@@ -46,12 +49,16 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
46
  # Generate images for each prompt in parallel
47
  loop = asyncio.get_running_loop()
48
  tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
 
49
  responses = await asyncio.gather(*tasks)
50
-
 
51
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
 
52
  return images
53
 
54
  def process_prompt(sentence_mapping, character_dict, selected_style):
 
55
  try:
56
  # See if there is a loop already running. If there is, reuse it.
57
  loop = asyncio.get_running_loop()
@@ -59,9 +66,11 @@ def process_prompt(sentence_mapping, character_dict, selected_style):
59
  # Create new event loop if one is not running
60
  loop = asyncio.new_event_loop()
61
  asyncio.set_event_loop(loop)
 
62
 
63
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
64
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
 
65
  return cmpt_return
66
 
67
  # Gradio interface with high concurrency limit
@@ -76,4 +85,6 @@ gradio_interface = gr.Interface(
76
  )
77
 
78
  if __name__ == "__main__":
 
79
  gradio_interface.launch()
 
 
6
  import gradio as gr
7
 
8
  # Load the model once outside of the function
9
+ print("Loading the model...")
10
  model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
11
+ print("Model loaded successfully.")
12
 
13
  def generate_image(prompt, prompt_name):
14
  try:
15
+ print(f"Generating response for {prompt_name} with prompt: {prompt}")
16
  output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
17
+ print(f"Output for {prompt_name}: {output}")
18
 
19
  # Check if the model returned images
20
  if isinstance(output.images, list) and len(output.images) > 0:
 
35
  return None
36
 
37
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
38
+ print(f"queue_api_calls invoked with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
39
  prompts = []
40
 
41
  # Generate prompts for each paragraph
42
  for paragraph_number, sentences in sentence_mapping.items():
43
  combined_sentence = " ".join(sentences)
44
+ print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}")
45
  prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
46
  prompts.append((paragraph_number, prompt))
47
  print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
 
49
  # Generate images for each prompt in parallel
50
  loop = asyncio.get_running_loop()
51
  tasks = [loop.run_in_executor(None, generate_image, prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts]
52
+ print("Tasks created for image generation.")
53
  responses = await asyncio.gather(*tasks)
54
+ print("Responses received from image generation tasks.")
55
+
56
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
57
+ print(f"Images generated: {images}")
58
  return images
59
 
60
  def process_prompt(sentence_mapping, character_dict, selected_style):
61
+ print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}")
62
  try:
63
  # See if there is a loop already running. If there is, reuse it.
64
  loop = asyncio.get_running_loop()
 
66
  # Create new event loop if one is not running
67
  loop = asyncio.new_event_loop()
68
  asyncio.set_event_loop(loop)
69
+ print("Event loop created.")
70
 
71
  # This sends the prompts to function that sets up the async calls. Once all the calls to the API complete, it returns a list of the gr.Textbox with value= set.
72
  cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
73
+ print(f"process_prompt completed with return value: {cmpt_return}")
74
  return cmpt_return
75
 
76
  # Gradio interface with high concurrency limit
 
85
  )
86
 
87
  if __name__ == "__main__":
88
+ print("Launching Gradio interface...")
89
  gradio_interface.launch()
90
+ print("Gradio interface launched.")