File size: 5,467 Bytes
7454012 6414f94 2680aa6 7454012 6414f94 3190548 d01a85f 7454012 248cf5e 31764f2 6414f94 7454012 6414f94 3ca195b 15c5050 125c6bf 6414f94 9bf2a3b f27ae54 9bf2a3b 125c6bf 9bf2a3b c1f2126 6414f94 d01a85f ddce24a c1f2126 d01a85f 2680aa6 c1f2126 3190548 0e52fa4 3190548 8120054 c1f2126 6414f94 0e52fa4 6414f94 7454012 6414f94 d26c581 7454012 d26c581 7454012 d26c581 44cb863 6414f94 15c5050 b635f79 6414f94 9c67ee7 125c6bf 3974601 125c6bf 0e52fa4 125c6bf bb17b88 0e52fa4 125c6bf 8e1fb51 125c6bf 15c5050 bb17b88 0e52fa4 bb17b88 0e52fa4 bb17b88 e5f809c bb17b88 15c5050 bb17b88 0a4f4ea 9bf2a3b fb43d84 9bf2a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Basic libraries
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
# Astropy
from astropy.io import fits
from astropy.wcs import WCS
from astropy.nddata import Cutout2D, CCDData
from astropy.convolution import Gaussian2DKernel as Gauss
from astropy.convolution import convolve
# HuggingFace
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("Plsek/CADET-v1")
# Streamlit
import streamlit as st
st.set_option('deprecation.showPyplotGlobalUse', False)
st.set_page_config(page_title="Cavity Detection Tool", layout="wide")
# st.title("Cavity Detection Tool")
_, col, _ = st.columns([1, 3, 1])
with col:
st.markdown("# Cavity Detection Tool")
st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies. To use this tool: upload your image, select the scale of interest, and make a prediction! If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
st.markdown("Input images should be centered at the centre of the galaxy and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
# Create file uploader widget
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])
# Define function to plot the uploaded image
def plot_image(image, scale):
plt.figure(figsize=(4, 4))
x0 = image.shape[0] // 2 - scale * 128 / 2
plt.imshow(image, origin="lower")
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
plt.axis('off')
with colA: st.pyplot()
# Define function to plot the prediction
def plot_prediction(pred):
plt.figure(figsize=(4, 4))
plt.imshow(pred, origin="lower")
plt.axis('off')
with colB: st.pyplot()
# Cut input image and rebin it to 128x128 pixels
def cut(data0, wcs0, scale=1):
shape = data0.shape[0]
x0 = shape / 2
size = 128 * scale
cutout = Cutout2D(data0, (x0, x0), (size, size), wcs=wcs0)
data, wcs = cutout.data, cutout.wcs
# Regrid data
factor = size // 128
data = data.reshape(128, factor, 128, factor).mean(-1).mean(1)
# Regrid wcs
ra, dec = wcs.wcs_pix2world(np.array([[63, 63]]),0)[0]
wcs.wcs.cdelt[0] = wcs.wcs.cdelt[0] * factor
wcs.wcs.cdelt[1] = wcs.wcs.cdelt[1] * factor
wcs.wcs.crval[0] = ra
wcs.wcs.crval[1] = dec
wcs.wcs.crpix[0] = 64 / factor
wcs.wcs.crpix[1] = 64 / factor
return data, wcs
def decompose_cavity(pred, th2=0.7, amin=10):
X, Y = pred.nonzero()
data = np.array([X,Y]).reshape(2, -1)
# DBSCAN CLUSTERING ALGORITHM
try: clusters = DBSCAN(eps=1.5, min_samples=3).fit(data.T).labels_
except: clusters = []
N = len(set(clusters))
cavities = []
for i in range(N):
img = np.zeros((128,128))
b = clusters == i
xi, yi = X[b], Y[b]
img[xi, yi] = pred[xi, yi]
# THRESHOLDING #2
if not (img > th2).any(): continue
# MINIMAL AREA
if np.sum(img) <= amin: continue
cavities.append(img)
return cavities
# If file is uploaded, read in the data and plot it
if uploaded_file is not None:
with fits.open(uploaded_file) as hdul:
data = hdul[0].data
wcs = WCS(hdul[0].header)
# Make four columns for buttons
_, col1, col2, col3, col4, _ = st.columns([1,0.75,0.75,0.75,0.75,1])
col1.subheader("Input image")
col3.subheader("Prediction")
with col1:
st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
max_scale = int(data.shape[0] // 128)
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
scale = int(scale.split("x")[0]) // 128
with col2:
detect = st.button('Detect cavities')
with col3:
decompose = st.button('Docompose cavities')
# Make two columns for plots
_, colA, colB, colC, _ = st.columns([1,1,1,1,1])
image = np.log10(data+1)
plot_image(image, scale)
if detect:
data, wcs = cut(data, wcs, scale=scale)
image = np.log10(data+1)
y_pred = 0
for j in [0,1,2,3]:
rotated = np.rot90(image, j)
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
pred = np.rot90(pred, -j)
y_pred += pred / 4
# Thresholding
y_pred = np.where(y_pred > 0.4, y_pred, 0)
# if decompose:
# cavs = decompose_cavity(y_pred, )
plot_prediction(y_pred, decompose)
# ccd = CCDData(y_pred, unit="adu", wcs=wcs)
# ccd.write("predicted.fits", overwrite=True)
# with open('predicted.fits', 'rb') as f:
# res = f.read()
# with col4:
# pass
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
# # # download = st.button('Download')
# download = st.download_button(label="Download", data=res, file_name="predicted.fits", mime="application/octet-stream") |