Update app.py
Browse files
app.py
CHANGED
@@ -29,22 +29,14 @@ def plot_image(image_array, scale):
|
|
29 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
30 |
|
31 |
plt.axis('off')
|
32 |
-
|
33 |
-
with col1:
|
34 |
-
st.pyplot()
|
35 |
|
36 |
# Define function to plot the prediction
|
37 |
-
def plot_prediction(
|
38 |
plt.figure(figsize=(4, 4))
|
39 |
-
# plt.subplot(1, 2, 1)
|
40 |
-
# plt.imshow(image_array, origin="lower")
|
41 |
-
# plt.axis('off')
|
42 |
-
|
43 |
-
# plt.subplot(1, 2, 2)
|
44 |
plt.imshow(pred, origin="lower")
|
45 |
plt.axis('off')
|
46 |
-
with col2:
|
47 |
-
st.pyplot()
|
48 |
|
49 |
def cut(data0, wcs0, scale=1):
|
50 |
shape = data0.shape[0]
|
@@ -80,24 +72,25 @@ if uploaded_file is not None:
|
|
80 |
|
81 |
plot_image(np.log10(data+1), scale)
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# data = f.read()
|
103 |
-
# st.download_button(label="Download", data=data, file_name="predicted.fits", mime="application/octet-stream")
|
|
|
29 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
30 |
|
31 |
plt.axis('off')
|
32 |
+
with col1: st.pyplot()
|
|
|
|
|
33 |
|
34 |
# Define function to plot the prediction
|
35 |
+
def plot_prediction(pred):
|
36 |
plt.figure(figsize=(4, 4))
|
|
|
|
|
|
|
|
|
|
|
37 |
plt.imshow(pred, origin="lower")
|
38 |
plt.axis('off')
|
39 |
+
with col2: st.pyplot()
|
|
|
40 |
|
41 |
def cut(data0, wcs0, scale=1):
|
42 |
shape = data0.shape[0]
|
|
|
72 |
|
73 |
plot_image(np.log10(data+1), scale)
|
74 |
|
75 |
+
with col2:
|
76 |
+
if st.button('Detect cavities'):
|
77 |
+
data, wcs = cut(data, wcs, scale=scale)
|
78 |
+
|
79 |
+
image_data = np.log10(data+1)
|
80 |
|
81 |
+
y_pred = 0
|
82 |
+
for j in [0,1,2,3]:
|
83 |
+
rotated = np.rot90(image_data, j)
|
84 |
+
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
85 |
+
pred = np.rot90(pred, -j)
|
86 |
+
y_pred += pred / 4
|
87 |
+
|
88 |
+
# ccd = CCDData(pred, unit="adu", wcs=wcs)
|
89 |
+
# ccd.write(f"predicted.fits", overwrite=True)
|
90 |
+
|
91 |
+
plot_prediction(y_pred)
|
92 |
+
|
93 |
+
# if st.button('Download FITS File'):
|
94 |
+
# with open('predicted.fits', 'rb') as f:
|
95 |
+
# data = f.read()
|
96 |
+
# st.download_button(label="Download", data=data, file_name="predicted.fits", mime="application/octet-stream")
|
|
|
|