Update app.py
Browse files
app.py
CHANGED
@@ -79,41 +79,52 @@ if uploaded_file is not None:
|
|
79 |
col2.subheader("CADET prediction")
|
80 |
|
81 |
with col1:
|
82 |
-
st.
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Add a slider to change the scale
|
92 |
with col1:
|
93 |
plot_image(np.log10(data+1), scale)
|
94 |
|
95 |
with col2:
|
96 |
-
|
97 |
-
data, wcs = cut(data, wcs, scale=scale)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
for j in [0,1,2,3]:
|
103 |
-
rotated = np.rot90(image, j)
|
104 |
-
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
105 |
-
pred = np.rot90(pred, -j)
|
106 |
-
y_pred += pred / 4
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
col2.subheader("CADET prediction")
|
80 |
|
81 |
with col1:
|
82 |
+
col1_1, col1_2 = st.columns(2)
|
83 |
+
|
84 |
+
with col1_2:
|
85 |
+
st.Button("Smooth")
|
86 |
+
|
87 |
+
with col1_1:
|
88 |
+
st.markdown(
|
89 |
+
"""<style>[data-baseweb="select"] {margin-top: -50px;}</style>""",
|
90 |
+
unsafe_allow_html=True
|
91 |
+
)
|
92 |
+
|
93 |
+
max_scale = int(data.shape[0] // 128)
|
94 |
+
# scale = st.slider("Scale", 1, max_scale, 1, 1)
|
95 |
+
scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
96 |
+
|
97 |
# Add a slider to change the scale
|
98 |
with col1:
|
99 |
plot_image(np.log10(data+1), scale)
|
100 |
|
101 |
with col2:
|
102 |
+
col2_1, col2_2 = st.columns(2)
|
|
|
103 |
|
104 |
+
with col2_1:
|
105 |
+
if st.button('Detect cavities'):
|
106 |
+
data, wcs = cut(data, wcs, scale=scale)
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
image = np.log10(data+1)
|
109 |
+
|
110 |
+
y_pred = 0
|
111 |
+
for j in [0,1,2,3]:
|
112 |
+
rotated = np.rot90(image, j)
|
113 |
+
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
114 |
+
pred = np.rot90(pred, -j)
|
115 |
+
y_pred += pred / 4
|
116 |
+
|
117 |
+
# Thresholding
|
118 |
+
y_pred = np.where(y_pred > 0.4, y_pred, 0)
|
119 |
+
|
120 |
+
with col2:
|
121 |
+
plot_prediction(y_pred)
|
122 |
+
|
123 |
+
ccd = CCDData(pred, unit="adu", wcs=wcs)
|
124 |
+
ccd.write(f"predicted.fits", overwrite=True)
|
125 |
+
|
126 |
+
with col2_2:
|
127 |
+
if st.button('Download FITS File'):
|
128 |
+
with open('predicted.fits', 'rb') as f:
|
129 |
+
data = f.read()
|
130 |
+
st.download_button(label="Download", data=data, file_name="predicted.fits", mime="application/octet-stream")
|