Plsek commited on
Commit
0e52fa4
·
1 Parent(s): 8a6c339

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -16
app.py CHANGED
@@ -33,14 +33,14 @@ def plot_image(image_array, scale):
33
  plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
 
35
  plt.axis('off')
36
- with col1: st.pyplot()
37
 
38
  # Define function to plot the prediction
39
  def plot_prediction(pred):
40
  plt.figure(figsize=(4, 4))
41
  plt.imshow(pred, origin="lower")
42
  plt.axis('off')
43
- with col2: st.pyplot()
44
 
45
  # Cut input image and rebin it to 128x128 pixels
46
  def cut(data0, wcs0, scale=1):
@@ -73,26 +73,33 @@ if uploaded_file is not None:
73
  wcs = WCS(hdul[0].header)
74
 
75
  # Make two columns
76
- col1, col2 = st.columns(2)
77
  col1.subheader("Input image")
78
- col2.subheader("CADET prediction")
79
 
80
  # Add a slider to change the scale
81
  with col1:
82
- st.markdown(
83
- """<style>[data-baseweb="select"] {margin-top: -52px;}</style>""",
84
- unsafe_allow_html=True
85
- )
86
 
87
  max_scale = int(data.shape[0] // 128)
88
  # scale = st.slider("Scale", 1, max_scale, 1, 1)
89
  scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
90
-
91
- plot_image(np.log10(data+1), scale)
92
-
93
- with col2:
94
  detect = st.button('Detect cavities')
 
 
 
95
 
 
 
 
 
 
 
96
  if detect:
97
  data, wcs = cut(data, wcs, scale=scale)
98
 
@@ -110,11 +117,8 @@ if uploaded_file is not None:
110
 
111
  plot_prediction(y_pred)
112
 
113
- with col2:
114
- download = st.button('Download')
115
-
116
  if download:
117
- ccd = CCDData(pred, unit="adu", wcs=wcs)
118
  ccd.write("predicted.fits", overwrite=True)
119
  with open('predicted.fits', 'rb') as f:
120
  data = f.read()
 
33
  plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
 
35
  plt.axis('off')
36
+ with colA: st.pyplot()
37
 
38
  # Define function to plot the prediction
39
  def plot_prediction(pred):
40
  plt.figure(figsize=(4, 4))
41
  plt.imshow(pred, origin="lower")
42
  plt.axis('off')
43
+ with colB: st.pyplot()
44
 
45
  # Cut input image and rebin it to 128x128 pixels
46
  def cut(data0, wcs0, scale=1):
 
73
  wcs = WCS(hdul[0].header)
74
 
75
  # Make two columns
76
+ col1, col2, col3, col4 = st.columns(4)
77
  col1.subheader("Input image")
78
+ col3.subheader("CADET prediction")
79
 
80
  # Add a slider to change the scale
81
  with col1:
82
+ smooth = st.button("Smooth")
83
+
84
+ with col2:
85
+ st.markdown("""<style>[data-baseweb="select"] {margin-top: -52px;}</style>""", unsafe_allow_html=True)
86
 
87
  max_scale = int(data.shape[0] // 128)
88
  # scale = st.slider("Scale", 1, max_scale, 1, 1)
89
  scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
90
+
91
+ with col3:
 
 
92
  detect = st.button('Detect cavities')
93
+
94
+ with col4:
95
+ download = st.button('Download')
96
 
97
+
98
+ colA, colB = st.columns(2)
99
+
100
+ plot_image(np.log10(data+1), scale)
101
+
102
+
103
  if detect:
104
  data, wcs = cut(data, wcs, scale=scale)
105
 
 
117
 
118
  plot_prediction(y_pred)
119
 
 
 
 
120
  if download:
121
+ ccd = CCDData(y_pred, unit="adu", wcs=wcs)
122
  ccd.write("predicted.fits", overwrite=True)
123
  with open('predicted.fits', 'rb') as f:
124
  data = f.read()