Update app.py
Browse files
app.py
CHANGED
|
@@ -117,8 +117,8 @@ if uploaded_file is not None:
|
|
| 117 |
st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
| 118 |
max_scale = int(data.shape[0] // 128)
|
| 119 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
| 120 |
-
scale =
|
| 121 |
-
scale = scale.split("x")[0] // 128
|
| 122 |
|
| 123 |
with col2:
|
| 124 |
detect = st.button('Detect cavities')
|
|
@@ -126,30 +126,30 @@ if uploaded_file is not None:
|
|
| 126 |
with col3:
|
| 127 |
decompose = st.button('Docompose cavities')
|
| 128 |
|
| 129 |
-
#
|
| 130 |
-
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
-
|
| 153 |
|
| 154 |
# ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
| 155 |
# ccd.write("predicted.fits", overwrite=True)
|
|
|
|
| 117 |
st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
| 118 |
max_scale = int(data.shape[0] // 128)
|
| 119 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
| 120 |
+
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
| 121 |
+
scale = int(scale.split("x")[0]) // 128
|
| 122 |
|
| 123 |
with col2:
|
| 124 |
detect = st.button('Detect cavities')
|
|
|
|
| 126 |
with col3:
|
| 127 |
decompose = st.button('Docompose cavities')
|
| 128 |
|
| 129 |
+
# Make two columns for plots
|
| 130 |
+
_, colA, colB, colC, _ = st.columns([1,1,1,1,1])
|
| 131 |
|
| 132 |
+
image = np.log10(data+1)
|
| 133 |
+
plot_image(image, scale)
|
| 134 |
|
| 135 |
+
if detect:
|
| 136 |
+
data, wcs = cut(data, wcs, scale=scale)
|
| 137 |
+
image = np.log10(data+1)
|
| 138 |
|
| 139 |
+
y_pred = 0
|
| 140 |
+
for j in [0,1,2,3]:
|
| 141 |
+
rotated = np.rot90(image, j)
|
| 142 |
+
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
| 143 |
+
pred = np.rot90(pred, -j)
|
| 144 |
+
y_pred += pred / 4
|
| 145 |
+
|
| 146 |
+
# Thresholding
|
| 147 |
+
y_pred = np.where(y_pred > 0.4, y_pred, 0)
|
| 148 |
+
|
| 149 |
+
# if decompose:
|
| 150 |
+
# cavs = decompose_cavity(y_pred, )
|
| 151 |
|
| 152 |
+
plot_prediction(y_pred, decompose)
|
| 153 |
|
| 154 |
# ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
| 155 |
# ccd.write("predicted.fits", overwrite=True)
|