Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ from matplotlib.patches import Rectangle
|
|
7 |
from astropy.io import fits
|
8 |
from astropy.wcs import WCS
|
9 |
from astropy.nddata import Cutout2D, CCDData
|
|
|
|
|
10 |
|
11 |
# HuggingFace
|
12 |
from huggingface_hub import from_pretrained_keras
|
@@ -25,16 +27,23 @@ st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline traine
|
|
25 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])
|
26 |
|
27 |
# Define function to plot the uploaded image
|
28 |
-
def plot_image(
|
29 |
plt.figure(figsize=(4, 4))
|
30 |
|
31 |
-
x0 =
|
32 |
-
plt.imshow(
|
33 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
34 |
|
35 |
plt.axis('off')
|
36 |
with colA: st.pyplot()
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Define function to plot the prediction
|
39 |
def plot_prediction(pred):
|
40 |
plt.figure(figsize=(4, 4))
|
@@ -83,7 +92,7 @@ if uploaded_file is not None:
|
|
83 |
|
84 |
with col2:
|
85 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -52px;}</style>""", unsafe_allow_html=True)
|
86 |
-
st.markdown("""<style>[data-baseweb="select"] {margin-top:
|
87 |
|
88 |
max_scale = int(data.shape[0] // 128)
|
89 |
# scale = st.slider("Scale", 1, max_scale, 1, 1)
|
@@ -94,12 +103,12 @@ if uploaded_file is not None:
|
|
94 |
|
95 |
colA, colB = st.columns(2)
|
96 |
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
if detect:
|
101 |
data, wcs = cut(data, wcs, scale=scale)
|
102 |
-
|
103 |
image = np.log10(data+1)
|
104 |
|
105 |
y_pred = 0
|
@@ -112,14 +121,14 @@ if uploaded_file is not None:
|
|
112 |
# Thresholding
|
113 |
y_pred = np.where(y_pred > 0.4, y_pred, 0)
|
114 |
|
115 |
-
|
116 |
|
117 |
ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
118 |
ccd.write("predicted.fits", overwrite=True)
|
119 |
with open('predicted.fits', 'rb') as f:
|
120 |
data = f.read()
|
121 |
|
122 |
-
|
123 |
-
|
124 |
# # download = st.button('Download')
|
125 |
# download = st.download_button(label="Download", data=data, file_name="predicted.fits", mime="application/octet-stream")
|
|
|
7 |
from astropy.io import fits
|
8 |
from astropy.wcs import WCS
|
9 |
from astropy.nddata import Cutout2D, CCDData
|
10 |
+
from astropy.convolution import Gaussian2DKernel as Gauss
|
11 |
+
from astropy.convolution import convolve
|
12 |
|
13 |
# HuggingFace
|
14 |
from huggingface_hub import from_pretrained_keras
|
|
|
27 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])
|
28 |
|
29 |
# Define function to plot the uploaded image
|
30 |
+
def plot_image(image, scale):
|
31 |
plt.figure(figsize=(4, 4))
|
32 |
|
33 |
+
x0 = image.shape[0] // 2 - scale * 128 / 2
|
34 |
+
plt.imshow(image, origin="lower")
|
35 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
36 |
|
37 |
plt.axis('off')
|
38 |
with colA: st.pyplot()
|
39 |
|
40 |
+
# Define function to smooth image
|
41 |
+
def smooth_image(image, scale):
|
42 |
+
smoothed = convolve(image, boundary = "wrap", nan_treatment="interpolate",
|
43 |
+
kernel = Gauss(x_stddev = 2, y_stddev = 2))
|
44 |
+
|
45 |
+
return smoothed
|
46 |
+
|
47 |
# Define function to plot the prediction
|
48 |
def plot_prediction(pred):
|
49 |
plt.figure(figsize=(4, 4))
|
|
|
92 |
|
93 |
with col2:
|
94 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -52px;}</style>""", unsafe_allow_html=True)
|
95 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: 22px;}</style>""", unsafe_allow_html=True)
|
96 |
|
97 |
max_scale = int(data.shape[0] // 128)
|
98 |
# scale = st.slider("Scale", 1, max_scale, 1, 1)
|
|
|
103 |
|
104 |
colA, colB = st.columns(2)
|
105 |
|
106 |
+
image = np.log10(data+1)
|
107 |
+
if smooth: image = smooth_image(image, scale)
|
108 |
+
plot_image(image, scale)
|
109 |
|
110 |
if detect:
|
111 |
data, wcs = cut(data, wcs, scale=scale)
|
|
|
112 |
image = np.log10(data+1)
|
113 |
|
114 |
y_pred = 0
|
|
|
121 |
# Thresholding
|
122 |
y_pred = np.where(y_pred > 0.4, y_pred, 0)
|
123 |
|
124 |
+
plot_prediction(y_pred)
|
125 |
|
126 |
ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
127 |
ccd.write("predicted.fits", overwrite=True)
|
128 |
with open('predicted.fits', 'rb') as f:
|
129 |
data = f.read()
|
130 |
|
131 |
+
with col4:
|
132 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: 32px;}</style>""", unsafe_allow_html=True)
|
133 |
# # download = st.button('Download')
|
134 |
# download = st.download_button(label="Download", data=data, file_name="predicted.fits", mime="application/octet-stream")
|