Update app.py
Browse files
app.py
CHANGED
@@ -18,12 +18,20 @@ model = from_pretrained_keras("Plsek/CADET-v1")
|
|
18 |
import streamlit as st
|
19 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
23 |
|
24 |
st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies. To use this tool: upload your image, select the scale of interest, and make a prediction! If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
|
25 |
|
26 |
-
st.markdown("Input images should be centered at the centre of the galaxy and point sources should be filled with surrounding background [dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html).")
|
27 |
|
28 |
|
29 |
# Create file uploader widget
|
@@ -40,13 +48,6 @@ def plot_image(image, scale):
|
|
40 |
plt.axis('off')
|
41 |
with colA: st.pyplot()
|
42 |
|
43 |
-
# Define function to smooth image
|
44 |
-
def smooth_image(image, scale):
|
45 |
-
smoothed = convolve(image, boundary = "wrap", nan_treatment="interpolate",
|
46 |
-
kernel = Gauss(x_stddev = 2, y_stddev = 2))
|
47 |
-
|
48 |
-
return smoothed
|
49 |
-
|
50 |
# Define function to plot the prediction
|
51 |
def plot_prediction(pred):
|
52 |
plt.figure(figsize=(4, 4))
|
@@ -77,6 +78,32 @@ def cut(data0, wcs0, scale=1):
|
|
77 |
|
78 |
return data, wcs
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# If file is uploaded, read in the data and plot it
|
82 |
if uploaded_file is not None:
|
@@ -88,24 +115,24 @@ if uploaded_file is not None:
|
|
88 |
col1, col2, col3, col4 = st.columns(4)
|
89 |
col1.subheader("Input image")
|
90 |
col3.subheader("Prediction")
|
91 |
-
|
92 |
-
# Add a slider to change the scale
|
93 |
-
with col1:
|
94 |
-
smooth = st.button("Smooth")
|
95 |
|
96 |
-
with
|
97 |
-
st.markdown("""<style>[data-baseweb="select"] {margin-top:
|
98 |
max_scale = int(data.shape[0] // 128)
|
99 |
-
scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
|
|
|
|
100 |
|
101 |
-
with
|
102 |
detect = st.button('Detect cavities')
|
103 |
|
|
|
|
|
|
|
104 |
# Make two columns for plots
|
105 |
colA, colB = st.columns(2)
|
106 |
|
107 |
image = np.log10(data+1)
|
108 |
-
if smooth: image = smooth_image(image, scale)
|
109 |
plot_image(image, scale)
|
110 |
|
111 |
if detect:
|
@@ -122,7 +149,10 @@ if uploaded_file is not None:
|
|
122 |
# Thresholding
|
123 |
y_pred = np.where(y_pred > 0.4, y_pred, 0)
|
124 |
|
125 |
-
|
|
|
|
|
|
|
126 |
|
127 |
ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
128 |
ccd.write("predicted.fits", overwrite=True)
|
@@ -131,6 +161,6 @@ if uploaded_file is not None:
|
|
131 |
|
132 |
with col4:
|
133 |
pass
|
134 |
-
|
135 |
# # download = st.button('Download')
|
136 |
download = st.download_button(label="Download", data=res, file_name="predicted.fits", mime="application/octet-stream")
|
|
|
18 |
import streamlit as st
|
19 |
st.set_option('deprecation.showPyplotGlobalUse', False)
|
20 |
|
21 |
+
st.set_page_config(
|
22 |
+
page_title="Cavity Detection Tool",
|
23 |
+
# page_icon="👋",
|
24 |
+
layout="wide"
|
25 |
+
# initial_sidebar_state="expanded",
|
26 |
+
}
|
27 |
+
)
|
28 |
|
29 |
+
|
30 |
+
# st.title("Cavity Detection Tool")
|
31 |
|
32 |
st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies. To use this tool: upload your image, select the scale of interest, and make a prediction! If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
|
33 |
|
34 |
+
st.markdown("Input images should be centered at the centre of the galaxy and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
|
35 |
|
36 |
|
37 |
# Create file uploader widget
|
|
|
48 |
plt.axis('off')
|
49 |
with colA: st.pyplot()
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# Define function to plot the prediction
|
52 |
def plot_prediction(pred):
|
53 |
plt.figure(figsize=(4, 4))
|
|
|
78 |
|
79 |
return data, wcs
|
80 |
|
81 |
+
def decompose_cavity(pred, th2=0.7, amin=10):
|
82 |
+
X, Y = pred.nonzero()
|
83 |
+
data = np.array([X,Y]).reshape(2, -1)
|
84 |
+
|
85 |
+
# DBSCAN CLUSTERING ALGORITHM
|
86 |
+
try: clusters = DBSCAN(eps=1.5, min_samples=3).fit(data.T).labels_
|
87 |
+
except: clusters = []
|
88 |
+
|
89 |
+
N = len(set(clusters))
|
90 |
+
cavities = []
|
91 |
+
|
92 |
+
for i in range(N):
|
93 |
+
img = np.zeros((128,128))
|
94 |
+
b = clusters == i
|
95 |
+
xi, yi = X[b], Y[b]
|
96 |
+
img[xi, yi] = pred[xi, yi]
|
97 |
+
|
98 |
+
# THRESHOLDING #2
|
99 |
+
if not (img > th2).any(): continue
|
100 |
+
|
101 |
+
# MINIMAL AREA
|
102 |
+
if np.sum(img) <= amin: continue
|
103 |
+
|
104 |
+
cavities.append(img)
|
105 |
+
|
106 |
+
return cavities
|
107 |
|
108 |
# If file is uploaded, read in the data and plot it
|
109 |
if uploaded_file is not None:
|
|
|
115 |
col1, col2, col3, col4 = st.columns(4)
|
116 |
col1.subheader("Input image")
|
117 |
col3.subheader("Prediction")
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
with col1:
|
120 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
121 |
max_scale = int(data.shape[0] // 128)
|
122 |
+
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
123 |
+
scale = int(st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden"))
|
124 |
+
scale = scale.split("x")[0] // 128
|
125 |
|
126 |
+
with col2:
|
127 |
detect = st.button('Detect cavities')
|
128 |
|
129 |
+
with col3:
|
130 |
+
decompose = st.button('Docompose cavities')
|
131 |
+
|
132 |
# Make two columns for plots
|
133 |
colA, colB = st.columns(2)
|
134 |
|
135 |
image = np.log10(data+1)
|
|
|
136 |
plot_image(image, scale)
|
137 |
|
138 |
if detect:
|
|
|
149 |
# Thresholding
|
150 |
y_pred = np.where(y_pred > 0.4, y_pred, 0)
|
151 |
|
152 |
+
# if decompose:
|
153 |
+
# cavs = decompose_cavity(y_pred, )
|
154 |
+
|
155 |
+
plot_prediction(y_pred, decompose)
|
156 |
|
157 |
ccd = CCDData(y_pred, unit="adu", wcs=wcs)
|
158 |
ccd.write("predicted.fits", overwrite=True)
|
|
|
161 |
|
162 |
with col4:
|
163 |
pass
|
164 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
165 |
# # download = st.button('Download')
|
166 |
download = st.download_button(label="Download", data=res, file_name="predicted.fits", mime="application/octet-stream")
|