Plsek commited on
Commit
0a4f4ea
·
1 Parent(s): e5f809c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -46
app.py CHANGED
@@ -33,15 +33,14 @@ def plot_image(image_array, scale):
33
  plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
 
35
  plt.axis('off')
36
- st.pyplot()
37
 
38
  # Define function to plot the prediction
39
  def plot_prediction(pred):
40
  plt.figure(figsize=(4, 4))
41
  plt.imshow(pred, origin="lower")
42
  plt.axis('off')
43
- # with col2:
44
- st.pyplot()
45
 
46
  # Cut input image and rebin it to 128x128 pixels
47
  def cut(data0, wcs0, scale=1):
@@ -77,54 +76,46 @@ if uploaded_file is not None:
77
  col1, col2 = st.columns(2)
78
  col1.subheader("Input image")
79
  col2.subheader("CADET prediction")
80
-
81
- with col1:
82
- col1_1, col1_2 = st.columns(2)
83
-
84
- with col1_2:
85
- st.Button("Smooth")
86
 
87
- with col1_1:
88
- st.markdown(
89
- """<style>[data-baseweb="select"] {margin-top: -50px;}</style>""",
90
- unsafe_allow_html=True
91
- )
92
-
93
- max_scale = int(data.shape[0] // 128)
94
- # scale = st.slider("Scale", 1, max_scale, 1, 1)
95
- scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
96
-
97
  # Add a slider to change the scale
98
  with col1:
99
- plot_image(np.log10(data+1), scale)
 
 
 
 
 
 
 
 
 
100
 
101
  with col2:
102
- col2_1, col2_2 = st.columns(2)
103
 
104
- with col2_1:
105
- if st.button('Detect cavities'):
106
- data, wcs = cut(data, wcs, scale=scale)
107
-
108
- image = np.log10(data+1)
109
-
110
- y_pred = 0
111
- for j in [0,1,2,3]:
112
- rotated = np.rot90(image, j)
113
- pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
114
- pred = np.rot90(pred, -j)
115
- y_pred += pred / 4
116
-
117
- # Thresholding
118
- y_pred = np.where(y_pred > 0.4, y_pred, 0)
119
 
120
- with col2:
121
- plot_prediction(y_pred)
122
 
123
- ccd = CCDData(pred, unit="adu", wcs=wcs)
124
- ccd.write(f"predicted.fits", overwrite=True)
125
-
126
- with col2_2:
127
- if st.button('Download FITS File'):
128
- with open('predicted.fits', 'rb') as f:
129
- data = f.read()
130
- st.download_button(label="Download", data=data, file_name="predicted.fits", mime="application/octet-stream")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
 
35
  plt.axis('off')
36
+ with col1: st.pyplot()
37
 
38
  # Define function to plot the prediction
39
  def plot_prediction(pred):
40
  plt.figure(figsize=(4, 4))
41
  plt.imshow(pred, origin="lower")
42
  plt.axis('off')
43
+ with col2: st.pyplot()
 
44
 
45
  # Cut input image and rebin it to 128x128 pixels
46
  def cut(data0, wcs0, scale=1):
 
76
  col1, col2 = st.columns(2)
77
  col1.subheader("Input image")
78
  col2.subheader("CADET prediction")
 
 
 
 
 
 
79
 
 
 
 
 
 
 
 
 
 
 
80
  # Add a slider to change the scale
81
  with col1:
82
+ st.markdown(
83
+ """<style>[data-baseweb="select"] {margin-top: -50px;}</style>""",
84
+ unsafe_allow_html=True
85
+ )
86
+
87
+ max_scale = int(data.shape[0] // 128)
88
+ # scale = st.slider("Scale", 1, max_scale, 1, 1)
89
+ scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
90
+
91
+ plot_image(np.log10(data+1), scale)
92
 
93
  with col2:
94
+ detect = st.button('Detect cavities'):
95
 
96
+ if detect:
97
+ data, wcs = cut(data, wcs, scale=scale)
 
 
 
 
 
 
 
 
 
 
 
 
 
98
 
99
+ image = np.log10(data+1)
 
100
 
101
+ y_pred = 0
102
+ for j in [0,1,2,3]:
103
+ rotated = np.rot90(image, j)
104
+ pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
105
+ pred = np.rot90(pred, -j)
106
+ y_pred += pred / 4
107
+
108
+ # Thresholding
109
+ y_pred = np.where(y_pred > 0.4, y_pred, 0)
110
+
111
+ plot_prediction(y_pred)
112
+
113
+ # with col2:
114
+ # download = st.button('Download FITS File')
115
+
116
+ # if download:
117
+ # ccd = CCDData(pred, unit="adu", wcs=wcs)
118
+ # ccd.write(f"predicted.fits", overwrite=True)
119
+ # with open('predicted.fits', 'rb') as f:
120
+ # data = f.read()
121
+ # st.download_button(label="Download", data=data, file_name="predicted.fits", mime="application/octet-stream")