File size: 9,041 Bytes
0012f0e
57f9dda
 
0ea9e86
7454012
e52c641
2bb6d79
6414f94
b4f54b4
6414f94
8111624
2680aa6
7454012
 
6414f94
 
3190548
d01a85f
 
7454012
1197a1f
 
 
7454012
 
6414f94
 
08bba4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8111624
08bba4c
 
29cd1e9
08bba4c
 
 
 
 
 
 
 
 
 
 
d26c581
08bba4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b8828
08bba4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b286d7
08bba4c
e9ef2e7
08bba4c
 
 
 
 
 
00e1b14
08bba4c
 
d083cdb
00e1b14
d083cdb
08bba4c
 
 
 
d083cdb
08bba4c
cb61555
08bba4c
 
 
 
 
 
 
992ff70
08bba4c
992ff70
08bba4c
 
992ff70
08bba4c
 
 
3ba01a0
08bba4c
 
 
b046ded
08bba4c
 
 
 
d0ce4b5
08bba4c
 
 
d083cdb
08bba4c
 
60663d5
08bba4c
 
 
 
 
 
0e52fa4
08bba4c
 
 
 
 
cd05002
08bba4c
 
cd05002
08bba4c
 
 
 
 
60663d5
08bba4c
 
60663d5
08bba4c
 
60663d5
08bba4c
 
d083cdb
08bba4c
 
 
cd05002
08bba4c
d083cdb
08bba4c
d083cdb
08bba4c
 
d083cdb
08bba4c
d083cdb
08bba4c
 
 
 
58946f4
08bba4c
2af3442
08bba4c
 
 
d083cdb
08bba4c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# HuggingFace Hub
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("Plsek/CADET-v1")

# Basic libraries
import os
import shutil
import numpy as np
from scipy.ndimage import center_of_mass
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from matplotlib.patches import Rectangle

# Astropy
from astropy.io import fits
from astropy.wcs import WCS
from astropy.nddata import Cutout2D, CCDData
from astropy.convolution import Gaussian2DKernel as Gauss
from astropy.convolution import convolve

# Scikit-learn
from sklearn.cluster import DBSCAN

# Streamlit
import streamlit as st
st.set_option('deprecation.showPyplotGlobalUse', False)

# # Define function to plot the uploaded image
# def plot_image(image, scale):
#     plt.figure(figsize=(4, 4))
#     x0 = image.shape[0] // 2 - scale * 128 / 2
#     plt.imshow(image, origin="lower")
#     plt.gca().add_patch(Rectangle((x0-0.5, x0-0.5), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
#     plt.axis('off')
#     plt.tight_layout()
#     with colA: st.pyplot()

# # Define function to plot the prediction
# def plot_prediction(pred):
#     plt.figure(figsize=(4, 4))
#     plt.imshow(pred, origin="lower")
#     plt.axis('off')
#     with colB: st.pyplot()

# # Define function to plot the decomposed prediction
# def plot_decomposed(decomposed):
#     plt.figure(figsize=(4, 4))
#     plt.imshow(decomposed, origin="lower") #, norm=LogNorm())

#     N = int(np.max(decomposed))
#     for i in range(N):
#         new = np.where(decomposed == i+1, 1, 0)
#         x0, y0 = center_of_mass(new)
#         color = "white" if i < N//2 else "black"
#         plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
    
#     plt.axis('off')
#     with colC: st.pyplot()
        
# # Define function to cut input image and rebin it to 128x128 pixels
# def cut(data0, wcs0, scale=1):
#     shape = data0.shape[0]
#     x0 = shape / 2
#     size = 128 * scale
#     cutout = Cutout2D(data0, (x0, x0), (size, size), wcs=wcs0)
#     data, wcs = cutout.data, cutout.wcs

#     # Regrid data
#     factor = size // 128
#     data = data.reshape(128, factor, 128, factor).mean(-1).mean(1)
    
#     # Regrid wcs
#     ra, dec = wcs.wcs_pix2world(np.array([[63, 63]]),0)[0]
#     wcs.wcs.cdelt[0] = wcs.wcs.cdelt[0] * factor
#     wcs.wcs.cdelt[1] = wcs.wcs.cdelt[1] * factor
#     wcs.wcs.crval[0] = ra
#     wcs.wcs.crval[1] = dec
#     wcs.wcs.crpix[0] = 64 / factor
#     wcs.wcs.crpix[1] = 64 / factor

#     return data, wcs

# # Define function to apply cutting and produce a prediction
# # @st.cache
# def cut_n_predict(data, wcs, scale):
#     data, wcs = cut(data, wcs, scale=scale)
#     image = np.log10(data+1)
    
#     y_pred = 0
#     for j in [0,1,2,3]:
#         rotated = np.rot90(image, j)
#         pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
#         pred = np.rot90(pred, -j)
#         y_pred += pred / 4

#     return y_pred, wcs

# # Define function to decompose prediction into individual cavities
# # @st.cache
# def decompose_cavity(pred, th2=0.7, amin=6):
#     X, Y = pred.nonzero()
#     data = np.array([X,Y]).reshape(2, -1)

#     # DBSCAN clustering
#     try: clusters = DBSCAN(eps=1.0, min_samples=3).fit(data.T).labels_
#     except: clusters = []

#     N = len(set(clusters))
#     cavities = []

#     for i in range(N):
#         img = np.zeros((128,128))
#         b = clusters == i
#         xi, yi = X[b], Y[b]
#         img[xi, yi] = pred[xi, yi]

#         # # Thresholding #2
#         # if not (img > th2).any(): continue

#         # Minimal area
#         if np.sum(img) <= amin: continue

#         cavities.append(img)

#     # Save raw and decomposed predictions to predictions folder
#     ccd = CCDData(pred, unit="adu", wcs=wcs)
#     ccd.write(f"predictions/predicted.fits", overwrite=True)
#     image_decomposed = np.zeros((128,128))
#     for i, cav in enumerate(cavities):
#         ccd = CCDData(cav, unit="adu", wcs=wcs)
#         ccd.write(f"predictions/predicted_{i+1}.fits", overwrite=True)
#         image_decomposed += (i+1) * np.where(cav > 0, 1, 0)

#     # shutil.make_archive("predictions", 'zip', "predictions")
    
#     return image_decomposed

# # @st.cache
# def load_file(fname):
#     with fits.open(fname) as hdul:
#         data = hdul[0].data
#         wcs = WCS(hdul[0].header)
#     return data, wcs

# def change_scale():
#     del st.session_state["threshold"]



# # Use wide layout and create columns
# st.set_page_config(page_title="Cavity Detection Tool", layout="wide")
# bordersize = 0.45
# _, col, _ = st.columns([bordersize, 3, bordersize])

# os.system("mkdir -p predictions")

# with col:
#     # Create heading and description
#     st.markdown("<h1 align='center'>Cavity Detection Tool</h1>", unsafe_allow_html=True)    
#     st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
#     st.markdown("To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities!")
#     st.markdown("Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
#     st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")

# # _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])

# # with col:
#     uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])

# # with col_2:
# #     st.markdown("### Examples")
# #     NGC4649 = st.button("NGC4649")

# # with col_3:
# #     st.markdown("""<style>[data-baseweb="select"] {margin-top: 26px;}</style>""", unsafe_allow_html=True)
# #     NGC5813 = st.button("NGC5813")

# # if NGC4649:
# #     uploaded_file = "NGC4649_example.fits"
# # elif NGC5813:
# #     uploaded_file = "NGC5813_example.fits"

# # # If file is uploaded, read in the data and plot it
# # if uploaded_file is not None:
# #     data, wcs = load_file(uploaded_file)

# #     # if "data" not in locals():
# #     #     data = np.zeros((128,128))
        
# #     # Make six columns for buttons
# #     _, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
# #     col1.subheader("Input image")
# #     col3.subheader("Prediction")
# #     col5.subheader("Decomposed")
# #     col6.subheader("")
    
# #     with col1:
# #         st.markdown("""<style>[data-baseweb="select"] {margin-top: -46px;}</style>""", unsafe_allow_html=True)
# #         max_scale = int(data.shape[0] // 128)
# #         scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden", on_change=change_scale)
# #         scale = int(scale.split("x")[0]) // 128
    
# #     # Detect button
# #     with col3: detect = st.button('Detect', key="detect")
    
# #     # Threshold slider
# #     with col4:
# #         st.markdown("")
# #         # st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
# #         threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05, key="threshold") #, label_visibility="hidden")
        
# #     # Decompose button
# #     with col5: decompose = st.button('Decompose', key="decompose")
        
# #     # Make two columns for plots
# #     _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
    
# #     image = np.log10(data+1)
# #     plot_image(image, scale)

# # if detect or threshold:
# # # if st.session_state.get("detect", True):
# #     y_pred, wcs = cut_n_predict(data, wcs, scale)
    
# #     y_pred_th = np.where(y_pred > threshold, y_pred, 0)
            
# #     plot_prediction(y_pred_th)

# #     if decompose or st.session_state.get("download", False):            
# #         image_decomposed = decompose_cavity(y_pred_th)

# #         plot_decomposed(image_decomposed)

# #         with col6:
# #             st.markdown("<br style='margin:4px 0'>", unsafe_allow_html=True)
# #             # st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
# #             fname = uploaded_file.name.strip(".fits")
    
# #             # if st.session_state.get("download", False):
    
# #             shutil.make_archive("predictions", 'zip', "predictions")
# #             with open('predictions.zip', 'rb') as f:
# #                 res = f.read()
            
# #             download = st.download_button(label="Download", data=res, key="download", 
# #                                             file_name=f'{fname}_{int(scale*128)}.zip', 
# #                                             # disabled=st.session_state.get("disabled", True), 
# #                                             mime="application/octet-stream")