Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import os
|
|
7 |
import shutil
|
8 |
import numpy as np
|
9 |
import matplotlib.pyplot as plt
|
|
|
10 |
from matplotlib.patches import Rectangle
|
11 |
|
12 |
# Astropy
|
@@ -44,11 +45,9 @@ with col:
|
|
44 |
# Define function to plot the uploaded image
|
45 |
def plot_image(image, scale):
|
46 |
plt.figure(figsize=(4, 4))
|
47 |
-
|
48 |
x0 = image.shape[0] // 2 - scale * 128 / 2
|
49 |
plt.imshow(image, origin="lower")
|
50 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
51 |
-
|
52 |
plt.axis('off')
|
53 |
with colA: st.pyplot()
|
54 |
|
@@ -62,7 +61,14 @@ def plot_prediction(pred):
|
|
62 |
# Define function to plot the decomposed prediction
|
63 |
def plot_decomposed(decomposed):
|
64 |
plt.figure(figsize=(4, 4))
|
65 |
-
plt.imshow(decomposed, origin="lower")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
plt.axis('off')
|
67 |
with colC: st.pyplot()
|
68 |
|
@@ -121,7 +127,6 @@ if uploaded_file is not None:
|
|
121 |
with fits.open(uploaded_file) as hdul:
|
122 |
data = hdul[0].data
|
123 |
wcs = WCS(hdul[0].header)
|
124 |
-
y_pred = np.zeros((128,128))
|
125 |
|
126 |
# Make four columns for buttons
|
127 |
_, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
|
@@ -134,7 +139,6 @@ if uploaded_file is not None:
|
|
134 |
max_scale = int(data.shape[0] // 128)
|
135 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
136 |
scale = int(scale.split("x")[0]) // 128
|
137 |
-
# np.save("pred.npy", y_pred)
|
138 |
|
139 |
with col3:
|
140 |
detect = st.button('Detect')
|
|
|
7 |
import shutil
|
8 |
import numpy as np
|
9 |
import matplotlib.pyplot as plt
|
10 |
+
from matplotlib.colors import LogNorm
|
11 |
from matplotlib.patches import Rectangle
|
12 |
|
13 |
# Astropy
|
|
|
45 |
# Define function to plot the uploaded image
|
46 |
def plot_image(image, scale):
|
47 |
plt.figure(figsize=(4, 4))
|
|
|
48 |
x0 = image.shape[0] // 2 - scale * 128 / 2
|
49 |
plt.imshow(image, origin="lower")
|
50 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
|
|
51 |
plt.axis('off')
|
52 |
with colA: st.pyplot()
|
53 |
|
|
|
61 |
# Define function to plot the decomposed prediction
|
62 |
def plot_decomposed(decomposed):
|
63 |
plt.figure(figsize=(4, 4))
|
64 |
+
plt.imshow(decomposed, origin="lower", norm=LogNorm())
|
65 |
+
|
66 |
+
N = np.max(decomposed)
|
67 |
+
for i in range(N):
|
68 |
+
new = np.where(decomposed == i+1, 1, 0)
|
69 |
+
x0, y0 = center_of_mass(new)
|
70 |
+
plt.text(y0, x0, f"{i+1}", fontsize=15, color="white")
|
71 |
+
|
72 |
plt.axis('off')
|
73 |
with colC: st.pyplot()
|
74 |
|
|
|
127 |
with fits.open(uploaded_file) as hdul:
|
128 |
data = hdul[0].data
|
129 |
wcs = WCS(hdul[0].header)
|
|
|
130 |
|
131 |
# Make four columns for buttons
|
132 |
_, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
|
|
|
139 |
max_scale = int(data.shape[0] // 128)
|
140 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
141 |
scale = int(scale.split("x")[0]) // 128
|
|
|
142 |
|
143 |
with col3:
|
144 |
detect = st.button('Detect')
|