Update app.py
Browse files
app.py
CHANGED
@@ -32,6 +32,7 @@ def plot_image(image, scale):
|
|
32 |
plt.imshow(image, origin="lower")
|
33 |
plt.gca().add_patch(Rectangle((x0-0.5, x0-0.5), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
34 |
plt.axis('off')
|
|
|
35 |
with colA: st.pyplot()
|
36 |
|
37 |
# Define function to plot the prediction
|
@@ -183,63 +184,65 @@ with col:
|
|
183 |
if uploaded_file is not None:
|
184 |
data, wcs = load_file(uploaded_file)
|
185 |
|
186 |
-
if "data" in locals():
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
max_scale = int(data.shape[0] // 128)
|
197 |
-
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden", on_change=change_scale)
|
198 |
-
scale = int(scale.split("x")[0]) // 128
|
199 |
-
|
200 |
-
# Detect button
|
201 |
-
with col3: detect = st.button('Detect', key="detect")
|
202 |
-
|
203 |
-
# Threshold slider
|
204 |
-
with col4:
|
205 |
-
st.markdown("")
|
206 |
-
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
207 |
-
threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05, key="threshold") #, label_visibility="hidden")
|
208 |
-
|
209 |
-
# Decompose button
|
210 |
-
with col5: decompose = st.button('Decompose', key="decompose")
|
211 |
-
|
212 |
-
# Make two columns for plots
|
213 |
-
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
214 |
-
|
215 |
-
image = np.log10(data+1)
|
216 |
-
plot_image(image, scale)
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
plot_prediction(y_pred_th)
|
225 |
|
226 |
-
|
227 |
-
|
|
|
228 |
|
229 |
-
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
32 |
plt.imshow(image, origin="lower")
|
33 |
plt.gca().add_patch(Rectangle((x0-0.5, x0-0.5), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
34 |
plt.axis('off')
|
35 |
+
plt.tight_layout()
|
36 |
with colA: st.pyplot()
|
37 |
|
38 |
# Define function to plot the prediction
|
|
|
184 |
if uploaded_file is not None:
|
185 |
data, wcs = load_file(uploaded_file)
|
186 |
|
187 |
+
if "data" not in locals():
|
188 |
+
data = np.zeros((128,128))
|
189 |
+
|
190 |
+
# Make six columns for buttons
|
191 |
+
_, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
|
192 |
+
col1.subheader("Input image")
|
193 |
+
col3.subheader("Prediction")
|
194 |
+
col5.subheader("Decomposed")
|
195 |
+
col6.subheader("")
|
196 |
+
|
197 |
+
with col1:
|
198 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: -46px;}</style>""", unsafe_allow_html=True)
|
199 |
+
max_scale = int(data.shape[0] // 128)
|
200 |
+
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden", on_change=change_scale)
|
201 |
+
scale = int(scale.split("x")[0]) // 128
|
202 |
+
|
203 |
+
# Detect button
|
204 |
+
with col3: detect = st.button('Detect', key="detect")
|
205 |
+
|
206 |
+
# Threshold slider
|
207 |
+
with col4:
|
208 |
+
st.markdown("")
|
209 |
+
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
210 |
+
threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05, key="threshold") #, label_visibility="hidden")
|
211 |
|
212 |
+
# Decompose button
|
213 |
+
with col5: decompose = st.button('Decompose', key="decompose")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
+
# Make two columns for plots
|
216 |
+
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
217 |
+
|
218 |
+
image = np.log10(data+1)
|
219 |
+
plot_image(image, scale)
|
|
|
|
|
220 |
|
221 |
+
if detect or threshold:
|
222 |
+
# if st.session_state.get("detect", True):
|
223 |
+
y_pred, wcs = cut_n_predict(data, wcs, scale)
|
224 |
|
225 |
+
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
|
226 |
+
|
227 |
+
plot_prediction(y_pred_th)
|
228 |
|
229 |
+
if decompose or st.session_state.get("download", False):
|
230 |
+
image_decomposed = decompose_cavity(y_pred_th)
|
231 |
+
|
232 |
+
plot_decomposed(image_decomposed)
|
233 |
+
|
234 |
+
with col6:
|
235 |
+
st.markdown("<br style='margin:4px 0'>", unsafe_allow_html=True)
|
236 |
+
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
237 |
+
fname = uploaded_file.name.strip(".fits")
|
238 |
+
|
239 |
+
# if st.session_state.get("download", False):
|
240 |
+
|
241 |
+
shutil.make_archive("predictions", 'zip', "predictions")
|
242 |
+
with open('predictions.zip', 'rb') as f:
|
243 |
+
res = f.read()
|
244 |
+
|
245 |
+
download = st.download_button(label="Download", data=res, key="download",
|
246 |
+
file_name=f'{fname}_{int(scale*128)}.zip',
|
247 |
+
# disabled=st.session_state.get("disabled", True),
|
248 |
+
mime="application/octet-stream")
|