Plsek commited on
Commit
60663d5
·
1 Parent(s): 3b1ce1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -50
app.py CHANGED
@@ -184,65 +184,65 @@ with col:
184
  if uploaded_file is not None:
185
  data, wcs = load_file(uploaded_file)
186
 
187
- if "data" not in locals():
188
- data = np.zeros((128,128))
 
 
 
 
 
 
 
189
 
190
- # Make six columns for buttons
191
- _, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
192
- col1.subheader("Input image")
193
- col3.subheader("Prediction")
194
- col5.subheader("Decomposed")
195
- col6.subheader("")
196
-
197
- with col1:
198
- st.markdown("""<style>[data-baseweb="select"] {margin-top: -46px;}</style>""", unsafe_allow_html=True)
199
- max_scale = int(data.shape[0] // 128)
200
- scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden", on_change=change_scale)
201
- scale = int(scale.split("x")[0]) // 128
202
-
203
- # Detect button
204
- with col3: detect = st.button('Detect', key="detect")
205
-
206
- # Threshold slider
207
- with col4:
208
- st.markdown("")
209
- # st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
210
- threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05, key="threshold") #, label_visibility="hidden")
211
 
212
- # Decompose button
213
- with col5: decompose = st.button('Decompose', key="decompose")
214
 
215
- # Make two columns for plots
216
- _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
217
-
218
- image = np.log10(data+1)
219
- plot_image(image, scale)
 
 
 
 
 
 
 
 
 
220
 
221
- if detect or threshold:
222
- # if st.session_state.get("detect", True):
223
- y_pred, wcs = cut_n_predict(data, wcs, scale)
224
 
225
- y_pred_th = np.where(y_pred > threshold, y_pred, 0)
226
 
227
- plot_prediction(y_pred_th)
228
 
229
- if decompose or st.session_state.get("download", False):
230
- image_decomposed = decompose_cavity(y_pred_th)
231
 
232
- plot_decomposed(image_decomposed)
233
 
234
- with col6:
235
- st.markdown("<br style='margin:4px 0'>", unsafe_allow_html=True)
236
- # st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
237
- fname = uploaded_file.name.strip(".fits")
238
 
239
- # if st.session_state.get("download", False):
240
 
241
- shutil.make_archive("predictions", 'zip', "predictions")
242
- with open('predictions.zip', 'rb') as f:
243
- res = f.read()
244
 
245
- download = st.download_button(label="Download", data=res, key="download",
246
- file_name=f'{fname}_{int(scale*128)}.zip',
247
- # disabled=st.session_state.get("disabled", True),
248
- mime="application/octet-stream")
 
184
  if uploaded_file is not None:
185
  data, wcs = load_file(uploaded_file)
186
 
187
+ # if "data" not in locals():
188
+ # data = np.zeros((128,128))
189
+
190
+ # Make six columns for buttons
191
+ _, col1, col2, col3, col4, col5, col6, _ = st.columns([bordersize,0.5,0.5,0.5,0.5,0.5,0.5,bordersize])
192
+ col1.subheader("Input image")
193
+ col3.subheader("Prediction")
194
+ col5.subheader("Decomposed")
195
+ col6.subheader("")
196
 
197
+ with col1:
198
+ st.markdown("""<style>[data-baseweb="select"] {margin-top: -46px;}</style>""", unsafe_allow_html=True)
199
+ max_scale = int(data.shape[0] // 128)
200
+ scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden", on_change=change_scale)
201
+ scale = int(scale.split("x")[0]) // 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
 
203
+ # Detect button
204
+ with col3: detect = st.button('Detect', key="detect")
205
 
206
+ # Threshold slider
207
+ with col4:
208
+ st.markdown("")
209
+ # st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
210
+ threshold = st.slider("Threshold", 0.0, 1.0, 0.0, 0.05, key="threshold") #, label_visibility="hidden")
211
+
212
+ # Decompose button
213
+ with col5: decompose = st.button('Decompose', key="decompose")
214
+
215
+ # Make two columns for plots
216
+ _, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
217
+
218
+ image = np.log10(data+1)
219
+ plot_image(image, scale)
220
 
221
+ # if detect or threshold:
222
+ # # if st.session_state.get("detect", True):
223
+ # y_pred, wcs = cut_n_predict(data, wcs, scale)
224
 
225
+ # y_pred_th = np.where(y_pred > threshold, y_pred, 0)
226
 
227
+ # plot_prediction(y_pred_th)
228
 
229
+ # if decompose or st.session_state.get("download", False):
230
+ # image_decomposed = decompose_cavity(y_pred_th)
231
 
232
+ # plot_decomposed(image_decomposed)
233
 
234
+ # with col6:
235
+ # st.markdown("<br style='margin:4px 0'>", unsafe_allow_html=True)
236
+ # # st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
237
+ # fname = uploaded_file.name.strip(".fits")
238
 
239
+ # # if st.session_state.get("download", False):
240
 
241
+ # shutil.make_archive("predictions", 'zip', "predictions")
242
+ # with open('predictions.zip', 'rb') as f:
243
+ # res = f.read()
244
 
245
+ # download = st.download_button(label="Download", data=res, key="download",
246
+ # file_name=f'{fname}_{int(scale*128)}.zip',
247
+ # # disabled=st.session_state.get("disabled", True),
248
+ # mime="application/octet-stream")