Update app.py
Browse files
app.py
CHANGED
@@ -56,6 +56,13 @@ def plot_prediction(pred):
|
|
56 |
plt.axis('off')
|
57 |
with colB: st.pyplot()
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Cut input image and rebin it to 128x128 pixels
|
60 |
def cut(data0, wcs0, scale=1):
|
61 |
shape = data0.shape[0]
|
@@ -105,8 +112,6 @@ def decompose_cavity(pred, th2=0.7, amin=10):
|
|
105 |
cavities.append(img)
|
106 |
|
107 |
return cavities
|
108 |
-
|
109 |
-
np.save("pred.npy", np.zeros((128,128)))
|
110 |
|
111 |
# If file is uploaded, read in the data and plot it
|
112 |
if uploaded_file is not None:
|
@@ -157,9 +162,9 @@ if uploaded_file is not None:
|
|
157 |
|
158 |
np.save("pred.npy", y_pred)
|
159 |
|
160 |
-
y_pred = np.load("pred.npy")
|
|
|
161 |
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
162 |
-
|
163 |
np.save("thresh.npy", y_pred)
|
164 |
|
165 |
plot_prediction(y_pred)
|
@@ -177,7 +182,9 @@ if uploaded_file is not None:
|
|
177 |
for i, cav in enumerate(cavs):
|
178 |
ccd = CCDData(cav, unit="adu", wcs=wcs)
|
179 |
ccd.write(f"predicted_{i+1}.fits", overwrite=True)
|
180 |
-
|
|
|
|
|
181 |
# with col4:
|
182 |
# pass
|
183 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
|
|
56 |
plt.axis('off')
|
57 |
with colB: st.pyplot()
|
58 |
|
59 |
+
# Define function to plot the decomposed prediction
|
60 |
+
def plot_prediction(pred):
|
61 |
+
plt.figure(figsize=(4, 4))
|
62 |
+
plt.imshow(pred, origin="lower")
|
63 |
+
plt.axis('off')
|
64 |
+
with colC: st.pyplot()
|
65 |
+
|
66 |
# Cut input image and rebin it to 128x128 pixels
|
67 |
def cut(data0, wcs0, scale=1):
|
68 |
shape = data0.shape[0]
|
|
|
112 |
cavities.append(img)
|
113 |
|
114 |
return cavities
|
|
|
|
|
115 |
|
116 |
# If file is uploaded, read in the data and plot it
|
117 |
if uploaded_file is not None:
|
|
|
162 |
|
163 |
np.save("pred.npy", y_pred)
|
164 |
|
165 |
+
try: y_pred = np.load("pred.npy")
|
166 |
+
except: y_pred = np.zeros((128,128))
|
167 |
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
|
|
168 |
np.save("thresh.npy", y_pred)
|
169 |
|
170 |
plot_prediction(y_pred)
|
|
|
182 |
for i, cav in enumerate(cavs):
|
183 |
ccd = CCDData(cav, unit="adu", wcs=wcs)
|
184 |
ccd.write(f"predicted_{i+1}.fits", overwrite=True)
|
185 |
+
|
186 |
+
plot_decomposed(np.zeros((128,128)))
|
187 |
+
|
188 |
# with col4:
|
189 |
# pass
|
190 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|