Plsek commited on
Commit
1197a1f
·
1 Parent(s): fce8ed0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -14,6 +14,9 @@ from astropy.nddata import Cutout2D, CCDData
14
  from astropy.convolution import Gaussian2DKernel as Gauss
15
  from astropy.convolution import convolve
16
 
 
 
 
17
  # Streamlit
18
  import streamlit as st
19
  st.set_option('deprecation.showPyplotGlobalUse', False)
@@ -121,6 +124,7 @@ if uploaded_file is not None:
121
  max_scale = int(data.shape[0] // 128)
122
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
123
  scale = int(scale.split("x")[0]) // 128
 
124
 
125
  with col3:
126
  detect = st.button('Detect')
@@ -151,18 +155,18 @@ if uploaded_file is not None:
151
 
152
  np.save("pred.npy", y_pred)
153
 
154
- if detect or bool(threshold):
155
  y_pred = np.load("pred.npy")
156
 
157
  pred = np.where(y_pred > threshold, y_pred, 0)
158
 
159
- plot_prediction(pred)
160
 
161
- with colC:
162
- st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
163
 
164
- # if decompose:
165
- # cavs = decompose_cavity(y_pred, )
166
 
167
  # ccd = CCDData(y_pred, unit="adu", wcs=wcs)
168
  # ccd.write("predicted.fits", overwrite=True)
 
14
  from astropy.convolution import Gaussian2DKernel as Gauss
15
  from astropy.convolution import convolve
16
 
17
+ # Scikit-learn
18
+ from sklearn.cluster import DBSCAN
19
+
20
  # Streamlit
21
  import streamlit as st
22
  st.set_option('deprecation.showPyplotGlobalUse', False)
 
124
  max_scale = int(data.shape[0] // 128)
125
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
126
  scale = int(scale.split("x")[0]) // 128
127
+ np.save("pred.npy", y_pred)
128
 
129
  with col3:
130
  detect = st.button('Detect')
 
155
 
156
  np.save("pred.npy", y_pred)
157
 
158
+ if bool(threshold):
159
  y_pred = np.load("pred.npy")
160
 
161
  pred = np.where(y_pred > threshold, y_pred, 0)
162
 
163
+ plot_prediction(pred)
164
 
165
+ # with colC:
166
+ # st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
167
 
168
+ # if decompose:
169
+ # cavs = decompose_cavity(y_pred)
170
 
171
  # ccd = CCDData(y_pred, unit="adu", wcs=wcs)
172
  # ccd.write("predicted.fits", overwrite=True)