File size: 43,476 Bytes
24a059f e109361 24a059f d24563e aeeda1a 18bd6ff 24a059f 13e4c4d 7fcd557 c308901 13e4c4d d24563e 13e4c4d d24563e f5e8de3 9803b0e e109361 fb73da9 e109361 fb73da9 e109361 9803b0e b0b8450 e109361 13e4c4d 9803b0e b0b8450 13e4c4d 6bcbc7b e109361 13e4c4d 24a059f 8b80c42 9803b0e 9f7748a 8b80c42 2f1a209 f5e8de3 2f1a209 1f7b6e5 2f1a209 70ae509 2f1a209 d67bb93 8b80c42 d67bb93 8b80c42 2f1a209 8b80c42 2f1a209 8b80c42 9803b0e 8b80c42 d30a8bb 8b80c42 d67bb93 8b80c42 2f1a209 9e3da0c d67bb93 9e3da0c 9f7748a 9803b0e e109361 1f7b6e5 e109361 b0b8450 e109361 9803b0e 9f7748a 8b5944b d24563e 13e4c4d d24563e 13e4c4d d24563e 8f89713 104bf5a 8f89713 9803b0e 8f89713 9803b0e aabd188 8f89713 1fe4357 8f89713 f5e8de3 803487b 8f89713 1fe4357 2f1a209 8f89713 e109361 1f0c8bc f5e8de3 9e3da0c b8ab1fc 7bdeca8 e359f0e a1ee136 54685aa aad6765 54685aa a1ee136 d55e531 a1ee136 7d75ad8 a1ee136 8fbfd67 a1ee136 c755c1e a1ee136 07aee39 7098daa ea94a6e d55e531 a1ee136 7098daa a1ee136 09f2be6 a1ee136 df5438f 2039721 59f9966 3165694 df5438f 2039721 59f9966 3165694 df5438f 2039721 df5438f 3165694 f85f3da df5438f a1ee136 b4ac62c bee0fa5 b4ac62c f292c79 b4ac62c df5438f b4ac62c f292c79 b4ac62c f292c79 b4ac62c 9d5d159 b4ac62c 9d5d159 da61d55 60b5137 4df948d 54685aa f85f3da 0f7ef29 f85f3da 0f7ef29 4cf45d5 6b2d15e 582f8ec f85f3da 4cf45d5 0f7ef29 706851c f85f3da 0f7ef29 706851c f85f3da 0f7ef29 f85f3da 706851c f85f3da 0f7ef29 f85f3da 706851c f85f3da 0f7ef29 f85f3da 0f7ef29 f85f3da 866c2f8 54685aa fa8abad 5dc58a0 87904ff e359f0e 87904ff e359f0e 87904ff 3ab70ce 87904ff 26a9076 1f35a2e 26a9076 2039721 87904ff ecfd2b0 7e020a6 ecfd2b0 e359f0e 3898c96 30cb266 8db9450 6b80f8b 30cb266 a0dbb90 30cb266 fbde589 30cb266 3898c96 bfda7ed 5d7850e 40a6d25 4996c56 42ad0a2 d6777ef 4df948d 4996c56 d0dba04 5578c3c d6777ef 4996c56 d0dba04 d6777ef 4996c56 d0dba04 aa88144 8e8d6c7 aa88144 8e8d6c7 9e3da0c 8e8d6c7 aa88144 8e8d6c7 aa88144 5578c3c d6777ef 5578c3c d6777ef aa88144 d6777ef aa88144 203177b cd3118d 9e3da0c 1ce757f d6777ef 5578c3c d6777ef 5578c3c d6777ef 9e3da0c d6777ef 5578c3c d6777ef 9e3da0c d6777ef 5578c3c d6777ef 5ede32f d24563e 73c3f03 35ad686 5dc58a0 35ad686 5dc58a0 514663d 35ad686 5dc58a0 35ad686 9e3da0c b11f8d5 9e3da0c b11f8d5 9e3da0c 3d8b2b7 ecfd2b0 e51b169 ecfd2b0 e51b169 ecfd2b0 e51b169 18bd6ff ecfd2b0 bfda7ed ecfd2b0 35ba041 027dd6e 09f2be6 a4a4c08 bfda7ed 5376412 5dc58a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 |
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi, HfFolder
from constants import CITATION_TEXT
LEADERBOARD_FILE = "leaderboard.csv"
GROUND_TRUTH_FILE = "ground_truth.csv"
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
# Ensure authentication and suppress warnings
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
# def initialize_leaderboard_file():
# """
# Ensure the leaderboard file exists and has the correct headers.
# """
# if not os.path.exists(LEADERBOARD_FILE):
# pd.DataFrame(columns=[
# "Model Name", "Overall Accuracy", "Valid Accuracy",
# "Correct Predictions", "Total Questions", "Timestamp"
# ]).to_csv(LEADERBOARD_FILE, index=False)
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
# pd.DataFrame(columns=[
# "Model Name", "Overall Accuracy", "Valid Accuracy",
# "Correct Predictions", "Total Questions", "Timestamp"
# ]).to_csv(LEADERBOARD_FILE, index=False)
# def clean_answer(answer):
# if pd.isna(answer):
# return None
# answer = str(answer)
# clean = re.sub(r'[^A-Da-d]', '', answer)
# return clean[0].upper() if clean else None
# def update_leaderboard(results):
# """
# Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
# """
# new_entry = {
# "Model Name": results['model_name'],
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
# "Correct Predictions": results['correct_predictions'],
# "Total Questions": results['total_questions'],
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
# }
# try:
# # Update the local leaderboard file
# new_entry_df = pd.DataFrame([new_entry])
# file_exists = os.path.exists(LEADERBOARD_FILE)
# new_entry_df.to_csv(
# LEADERBOARD_FILE,
# mode='a', # Append mode
# index=False,
# header=not file_exists # Write header only if the file is new
# )
# print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# # Push the updated file to the Hugging Face repository using HTTP API
# api = HfApi()
# token = HfFolder.get_token()
# api.upload_file(
# path_or_fileobj=LEADERBOARD_FILE,
# path_in_repo="leaderboard.csv",
# repo_id="SondosMB/ss", # Your Space repository
# repo_type="space",
# token=token
# )
# print("Leaderboard changes pushed to Hugging Face repository.")
# except Exception as e:
# print(f"Error updating leaderboard file: {e}")
# def load_leaderboard():
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
# return pd.DataFrame({
# "Model Name": [],
# "Overall Accuracy": [],
# "Valid Accuracy": [],
# "Correct Predictions": [],
# "Total Questions": [],
# "Timestamp": [],
# })
# return pd.read_csv(LEADERBOARD_FILE)
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
# try:
# ground_truth_path = hf_hub_download(
# repo_id="SondosMB/ground-truth-dataset",
# filename="ground_truth.csv",
# repo_type="dataset",
# use_auth_token=True
# )
# ground_truth_df = pd.read_csv(ground_truth_path)
# except FileNotFoundError:
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
# except Exception as e:
# return f"Error loading ground truth: {e}", load_leaderboard()
# if not prediction_file:
# return "Prediction file not uploaded.", load_leaderboard()
# try:
# #load predition file
# predictions_df = pd.read_csv(prediction_file.name)
# # Validate required columns in prediction file
# required_columns = ['question_id', 'predicted_answer']
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
# if missing_columns:
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
# load_leaderboard())
# # Validate 'Answer' column in ground truth file
# if 'Answer' not in ground_truth_df.columns:
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
# total_predictions = len(merged_df)
# total_valid_predictions = len(valid_predictions)
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
# results = {
# 'model_name': model_name if model_name else "Unknown Model",
# 'overall_accuracy': overall_accuracy,
# }
# if add_to_leaderboard:
# update_leaderboard(results)
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
# else:
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
# except Exception as e:
# return f"Error during evaluation: {str(e)}", load_leaderboard()
# initialize_leaderboard_file()
# def initialize_leaderboard_file():
# """
# Ensure the leaderboard file exists and has the correct headers.
# """
# if not os.path.exists(LEADERBOARD_FILE):
# pd.DataFrame(columns=[
# "Model Name", "Overall Accuracy", "Valid Accuracy",
# "Correct Predictions", "Total Questions", "Timestamp"
# ]).to_csv(LEADERBOARD_FILE, index=False)
# elif os.stat(LEADERBOARD_FILE).st_size == 0:
# pd.DataFrame(columns=[
# "Model Name", "Overall Accuracy", "Valid Accuracy",
# "Correct Predictions", "Total Questions", "Timestamp"
# ]).to_csv(LEADERBOARD_FILE, index=False)
def initialize_leaderboard_file():
"""
Ensure the leaderboard file exists and has the correct headers.
"""
if not os.path.exists(LEADERBOARD_FILE):
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Correct Predictions",
"Total Questions", "Timestamp", "Team Name"
]).to_csv(LEADERBOARD_FILE, index=False)
elif os.stat(LEADERBOARD_FILE).st_size == 0:
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Correct Predictions",
"Total Questions", "Timestamp", "Team Name"
]).to_csv(LEADERBOARD_FILE, index=False)
def clean_answer(answer):
if pd.isna(answer):
return None
answer = str(answer)
clean = re.sub(r'[^A-Da-d]', '', answer)
return clean[0].upper() if clean else None
# def update_leaderboard(results):
# """
# Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
# """
# new_entry = {
# "Model Name": results['model_name'],
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
# "Correct Predictions": results['correct_predictions'],
# "Total Questions": results['total_questions'],
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
# }
# try:
# # Update the local leaderboard file
# new_entry_df = pd.DataFrame([new_entry])
# file_exists = os.path.exists(LEADERBOARD_FILE)
# new_entry_df.to_csv(
# LEADERBOARD_FILE,
# mode='a', # Append mode
# index=False,
# header=not file_exists # Write header only if the file is new
# )
# print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# # Push the updated file to the Hugging Face repository using HTTP API
# api = HfApi()
# token = HfFolder.get_token()
# api.upload_file(
# path_or_fileobj=LEADERBOARD_FILE,
# path_in_repo="leaderboard.csv",
# repo_id="SondosMB/ss", # Your Space repository
# repo_type="space",
# token=token
# )
# print("Leaderboard changes pushed to Hugging Face repository.")
# except Exception as e:
# print(f"Error updating leaderboard file: {e}")
def update_leaderboard(results):
"""
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
"""
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"Team Name": results['Team_name']
}
try:
# Update the local leaderboard file
new_entry_df = pd.DataFrame([new_entry])
file_exists = os.path.exists(LEADERBOARD_FILE)
new_entry_df.to_csv(
LEADERBOARD_FILE,
mode='a', # Append mode
index=False,
header=not file_exists # Write header only if the file is new
)
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# Push the updated file to the Hugging Face repository using HTTP API
api = HfApi()
token = HfFolder.get_token()
api.upload_file(
path_or_fileobj=LEADERBOARD_FILE,
path_in_repo="leaderboard.csv",
repo_id="SondosMB/Mobile-MMLU", # Your Space repository
repo_type="space",
token=token
)
print("Leaderboard changes pushed to Hugging Face repository.")
except Exception as e:
print(f"Error updating leaderboard file: {e}")
def update_leaderboard_pro(results):
"""
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
"""
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"Team Name": results['Team_name']
}
try:
# Update the local leaderboard file
new_entry_df = pd.DataFrame([new_entry])
file_exists = os.path.exists(LEADERBOARD_FILE)
new_entry_df.to_csv(
LEADERBOARD_FILE,
mode='a', # Append mode
index=False,
header=not file_exists # Write header only if the file is new
)
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# Push the updated file to the Hugging Face repository using HTTP API
api = HfApi()
token = HfFolder.get_token()
api.upload_file(
path_or_fileobj=LEADERBOARD_FILE,
path_in_repo="leaderboardPro.csv",
repo_id="SondosMB/Mobile-MMLU", # Your Space repository
repo_type="space",
token=token
)
print("Leaderboard changes pushed to Hugging Face repository.")
except Exception as e:
print(f"Error updating leaderboard file: {e}")
# def load_leaderboard():
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
# return pd.DataFrame({
# "Model Name": [],
# "Overall Accuracy": [],
# "Valid Accuracy": [],
# "Correct Predictions": [],
# "Total Questions": [],
# "Timestamp": [],
# })
# return pd.read_csv(LEADERBOARD_FILE)
def load_leaderboard():
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
return pd.DataFrame({
"Model Name": [],
"Overall Accuracy": [],
"Correct Predictions": [],
"Total Questions": [],
"Timestamp": [],
"Team Name": [],
})
return pd.read_csv(LEADERBOARD_FILE)
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
# try:
# ground_truth_path = hf_hub_download(
# repo_id="SondosMB/ground-truth-dataset",
# filename="ground_truth.csv",
# repo_type="dataset",
# use_auth_token=True
# )
# ground_truth_df = pd.read_csv(ground_truth_path)
# except FileNotFoundError:
# return "Ground truth file not found in the dataset repository.", load_leaderboard()
# except Exception as e:
# return f"Error loading ground truth: {e}", load_leaderboard()
# if not prediction_file:
# return "Prediction file not uploaded.", load_leaderboard()
# try:
# #load predition file
# predictions_df = pd.read_csv(prediction_file.name)
# # Validate required columns in prediction file
# required_columns = ['question_id', 'predicted_answer']
# missing_columns = [col for col in required_columns if col not in predictions_df.columns]
# if missing_columns:
# return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
# load_leaderboard())
# # Validate 'Answer' column in ground truth file
# if 'Answer' not in ground_truth_df.columns:
# return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
# total_predictions = len(merged_df)
# total_valid_predictions = len(valid_predictions)
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
# results = {
# 'model_name': model_name if model_name else "Unknown Model",
# 'overall_accuracy': overall_accuracy,
# 'valid_accuracy': valid_accuracy,
# 'correct_predictions': correct_predictions,
# 'total_questions': total_predictions,
# }
# if add_to_leaderboard:
# update_leaderboard(results)
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
# else:
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
# except Exception as e:
# return f"Error during evaluation: {str(e)}", load_leaderboard()
def evaluate_predictions(prediction_file, model_name,Team_name ,add_to_leaderboard):
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except FileNotFoundError:
return "Ground truth file not found in the dataset repository.", load_leaderboard()
except Exception as e:
return f"Error loading ground truth: {e}", load_leaderboard()
if not prediction_file:
return "Prediction file not uploaded.", load_leaderboard()
try:
#load prediction file
predictions_df = pd.read_csv(prediction_file.name)
# Validate required columns in prediction file
required_columns = ['question_id', 'predicted_answer']
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
if missing_columns:
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
load_leaderboard())
# Validate 'Answer' column in ground truth file
if 'Answer' not in ground_truth_df.columns:
return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard()
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
results = {
'model_name': model_name if model_name else "Unknown Model",
'overall_accuracy': overall_accuracy,
'correct_predictions': correct_predictions,
'total_questions': total_predictions,
'Team_name': Team_name if Team_name else "Unknown Team",
}
if add_to_leaderboard:
update_leaderboard(results)
return "Evaluation completed and added to leaderboard.", load_leaderboard()
else:
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
except Exception as e:
return f"Error during evaluation: {str(e)}", load_leaderboard()
initialize_leaderboard_file()
def evaluate_predictions_pro(prediction_file, model_name,Team_name ,add_to_leaderboard):
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except FileNotFoundError:
return "Ground truth file not found in the dataset repository.", load_leaderboard_pro()
except Exception as e:
return f"Error loading ground truth: {e}", load_leaderboard_pro()
if not prediction_file:
return "Prediction file not uploaded.", load_leaderboard_pro()
try:
#load prediction file
predictions_df = pd.read_csv(prediction_file.name)
# Validate required columns in prediction file
required_columns = ['question_id', 'predicted_answer']
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
if missing_columns:
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
load_leaderboard())
# Validate 'Answer' column in ground truth file
if 'Answer' not in ground_truth_df.columns:
return "Error: 'Answer' column is missing in the ground truth dataset.", load_leaderboard_pro()
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
results = {
'model_name': model_name if model_name else "Unknown Model",
'overall_accuracy': overall_accuracy,
'correct_predictions': correct_predictions,
'total_questions': total_predictions,
'Team_name': Team_name if Team_name else "Unknown Team",
}
if add_to_leaderboard:
update_leaderboard_pro(results)
return "Evaluation completed and added to leaderboard.", load_leaderboard_pro()
else:
return "Evaluation completed but not added to leaderboard.", load_leaderboard_pro()
except Exception as e:
return f"Error during evaluation: {str(e)}", load_leaderboard_pro()
initialize_leaderboard_file()
# Function to set default mode
# Function to set default mode
import gradio as gr
# # Custom CSS to match website style
# # Define CSS to match a modern, professional design
# # Define enhanced CSS for the entire layout
css_tech_theme = """
body {
font-family: 'Roboto', sans-serif;
background-color: #f4f6fa;
color: #333333;
margin: 0;
padding: 0;
}
/* Header Styling */
header {
text-align: center;
padding: 60px 20px;
background: linear-gradient(135deg, #6a1b9a, #64b5f6);
color: #ffffff;
border-radius: 12px;
margin-bottom: 30px;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);
}
header h1 {
font-size: 3.5em;
font-weight: bold;
margin-bottom: 10px;
}
header h2 {
font-size: 2em;
margin-bottom: 15px;
}
header p {
font-size: 1em;
line-height: 1.8;
}
.header-buttons {
display: flex;
justify-content: center;
gap: 15px;
margin-top: 20px;
}
.header-buttons a {
text-decoration: none;
font-size: 1.5em;
padding: 15px 30px;
border-radius: 30px;
font-weight: bold;
background: #ffffff;
color: #6a1b9a;
transition: transform 0.3s, background 0.3s;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}
.header-buttons a:hover {
background: #64b5f6;
color: #ffffff;
transform: scale(1.05);
}
/* Pre-Tabs Section */
#pre-tabs{
text-align: left !important;
color:#6a1b9a
}
#pre-tabs h2 {
font-size: 3em
font-color:#6a1b9a
margin-bottom: 15px;
}
#pre-tabs p {
color: #555555;
line-height: 1.5;
font-size: 1.5em
}
/* Tabs Section */
.tabs {
margin: 0 auto;
padding: 20px;
background: #ffffff;
border-radius: 12px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
/* max-width: 1300px; /* change 1 */ */
}
/* Post-Tabs Section */
.post-tabs {
text-align: center;
padding: 40px 20px;
background: linear-gradient(135deg, #64b5f6, #6a1b9a);
color: #ffffff;
border-radius: 12px;
margin-top: 30px;
}
.post-tabs h2 {
color: blue;
font-size: 3.4em;
margin-bottom: 15px;
}
.post-tabs p {
font-size: 2em;
line-height: 1.8;
margin-bottom: 20px;
}
.post-tabs a {
text-decoration: none;
font-size: 1.1em;
padding: 15px 30px;
border-radius: 30px;
font-weight: bold;
background: #ffffff;
color: #6a1b9a;
transition: transform 0.3s, background 0.3s;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}
.post-tabs a:hover {
background: #6a1b9a;
color: #ffffff;
transform: scale(1.05);
}
/* Footer */
#custom-footer {
background: linear-gradient(135deg, #6a1b9a, #8e44ad);
color: #ffffff;
text-align: center;
padding: 40px 20px;
margin-top: 30px;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
}
#custom-footer h2 {
font-size: 1.5em;
margin-bottom: 15px;
}
#custom-footer p {
font-size: 0.8em;
line-height: 1.6;
margin-bottom: 20px;
}
/* Link Styling */
.social-links {
display: flex;
justify-content: center;
gap: 15px; /* Space between links */
}
.social-link {
display: inline-block;
text-decoration: none;
color: #ffffff;
background-color: #6a1b9a; /* Purple button background */
padding: 10px 20px;
border-radius: 30px;
font-size: 16px;
font-weight: bold;
transition: all 0.3s ease;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}
.social-link:hover {
background-color: #8c52d3; /* Darker shade on hover */
box-shadow: 0 6px 15px rgba(0, 0, 0, 0.2);
transform: translateY(-2px);
}
.social-link:active {
transform: translateY(1px);
box-shadow: 0 3px 8px rgba(0, 0, 0, 0.1);
}
#submission-buttons {
display: flex;
justify-content: center;
gap: 15px;
margin-top: 20px;
}
/* Buttons Styling */
#submission-buttons button {
padding: 12px 25px;
font-size: 1.1em;
color: #ffffff;
background: #6a1b9a;
border: none;
border-radius: 30px;
cursor: pointer;
font-weight: bold;
transition: all 0.3s ease;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
}
#submission-buttons button:hover {
background: #8c52d3; /* Slightly lighter purple */
transform: scale(1.05);
box-shadow: 0 6px 15px rgba(0, 0, 0, 0.2);
}
#submission-buttons button:active {
background: #5e1287; /* Darker purple */
transform: scale(0.98);
box-shadow: 0 3px 10px rgba(0, 0, 0, 0.1);
}
.gradio-container {
padding-bottom: 0 !important;
margin-bottom: 0 !important;
}
/* overview */
#overview {
border-radius: 12px;
}
#overview h2 {
font-size: 2.5em;
color: #6a1b9a !important;
text-align: left;
margin-bottom: 10px;
}
#overview h3 {
font-size: 2.2em;
color: #6a1b9a !important;
text-align: left;
margin-bottom: 20px;
}
#overview p {
font-size: 1.2em;
color: #333333;
line-height: 1.8;
margin-bottom: 15px;
}
#overview ul, #Overview ol {
font-size: 1.2em;
color: #555555;
margin: 20px 0;
padding-left: 40px;
}
#overview ul li, #Overview ol li {
margin-bottom: 10px;
font-size: 1.2em;
}
#overview ul li::marker, Overview ol li::marker {
color: #6a1b9a;
font-size: 1.2em;
}
overview a {
color: #6a1b9a;
text-decoration: underline;
}
overview a:hover {
color: #8c52d3;
}
footer {
margin-top: 0; /* Reduce space above the footer */
padding: 10px; /* Optional: Adjust padding inside the footer */
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css_tech_theme) as demo:
# Header Section
gr.Markdown("""
<header>
<h1>π Mobile-MMLU Challenge</h1>
<h2>π Pushing the Limits of Mobile LLMs</h2>
</header>
""")
# # Pre-Tabs Section
gr.Markdown("""
<section class="pre-tabs">
<h2 style="color: #6a1b9a; text-align: center; font-size: 2.5em; margin-bottom: 15px;">π Why Participate? π</h2>
<p style="font-size: 1.4em; text-align: center; color: #555555; line-height: 1.8; margin-bottom: 20px;">
The <strong>Mobile-MMLU Benchmark Competition</strong> provides an exceptional platform to showcase your
skills in mobile AI. Compete with innovators worldwide, drive technological advancements, and contribute
to shaping the future of mobile intelligence.
</p>
</section>""", elem_id="pre-tabs")
# gr.Markdown("""
# <section class="pre-tabs">
# <h2 style="color: #6a1b9a; text-align: center; font-size: 2.5em; margin-bottom: 15px;">π Why Participate? π</h2>
# <p style="font-size: 1.4em; text-align: center; color: #555555; line-height: 1.8; margin-bottom: 20px;">
# The <strong>Mobile-MMLU Benchmark Competition</strong> provides an exceptional platform to showcase your
# skills in mobile AI. Compete with innovators worldwide, drive technological advancements, and contribute
# to shaping the future of mobile intelligence.
# </p>
# </section>""", elem_id="pre-tabs")
# Tabs Section
with gr.Tabs(elem_id="tabs"):
# Overview Tab
with gr.TabItem("π Overview"):
gr.Markdown( """
<div class="tabs">
<h2 style="color: #6a1b9a; text-align: center;">About the Competition</h2>
<p>The <strong>Mobile-MMLU Benchmark Competition</strong> is a premier challenge designed to evaluate and advance mobile-optimized Large Language Models (LLMs). This competition is an excellent opportunity to showcase your model's ability to handle real-world scenarios and excel in mobile intelligence.</p>
<p>With a dataset spanning <strong>80 distinct fields</strong> and featuring <strong>16,186 questions</strong>, the competition emphasizes practical applications, from education and healthcare to technology and daily life.</p>
<h3 style="color: #8e44ad;">Why Compete?</h3>
<p>Participating in this competition allows you to:</p>
<ul>
<li>π Showcase your expertise in developing and optimizing LLMs for mobile platforms.</li>
<li>π Benchmark your modelβs performance against others in a highly competitive environment.</li>
<li>π Contribute to advancements in mobile AI, shaping the future of user-centric AI systems.</li>
</ul>
<h3 style="color: #6a1b9a;">How It Works</h3>
<ol>
<li>1οΈβ£ <strong>Download the Dataset:</strong> Access the dataset and detailed instructions on the <a href="https://github.com/VILA-Lab/Mobile-MMLU" target="_blank">GitHub page</a>. Follow the steps to ensure your environment is set up correctly.</li>
<li>2οΈβ£ <strong>Generate Predictions:</strong> Use the provided script in the GitHub repository to generate answers. Ensure the output file matches the format in the github </li>
<li>3οΈβ£ <strong>Submit Predictions:</strong> Upload your CSV file to the <strong>Submission Page</strong> on this platform.</li>
<li>4οΈβ£ <strong>Evaluation:</strong> Your submission will be scored based on accuracy. The results will include overall accuracy metric.</li>
<li>5οΈβ£ <strong>Leaderboard:</strong> Optionally, add your results to the real-time leaderboard to compare your model's performance with others.</li>
</ol>
<h3 style="color: #8e44ad;">Resources</h3>
<ul>
<li>π <a href="https://github.com/VILA-Lab/Mobile-MMLU" target="_blank">GitHub Repository</a>: Contains the dataset, scripts, and detailed instructions.</li>
<li>π <a href="https://huggingface.co/datasets/aidar-myrzakhan/Mobile-MMLU" target="_blank">Dataset Link</a>: Direct access to the competition dataset.</li>
<li>β <a href="https://github.com/VILA-Lab/Mobile-MMLU" target="_blank">Support Page</a>: Use this for queries or issues during participation.</li>
</ul>
</div>
""",elem_id="overview")
with gr.TabItem("π€ Submission"):
gr.Markdown("""
<div class="submission-section" style="border: 3px solid #6a1b9a; padding: 20px; border-radius: 12px; box-shadow: 0 4px 10px rgba(106, 27, 154, 0.2);">
<h2 style="color: #6a1b9a; text-align: center;">Submit Your Predictions</h2>
<p style="font-size: 1.2em; color: #333; text-align: center;">Upload your prediction file and provide your model name to evaluate and optionally submit your results to the leaderboard.</p>
</div>
""")
with gr.Row(elem_id="submission-fields"):
file_input = gr.File(label="π Upload Prediction CSV", file_types=[".csv"], interactive=True,scale=1, min_width=12000)
model_name_input = gr.Textbox(label="π·οΈ Model Name", placeholder="Enter your model name",scale=1, min_width=800)
Team_name_input = gr.Textbox(label="π·οΈ Team Name", placeholder="Enter your Team name",scale=1, min_width=800)
with gr.Row(elem_id="submission-results"):
overall_accuracy_display = gr.Number(label="π Overall Accuracy (%)", interactive=False,scale=1,min_width=1200)
with gr.Row(elem_id="submission-buttons"):
eval_button = gr.Button("π Evaluate",scale=1,min_width=1200)
submit_button = gr.Button("π€ Prove and Submit to Leaderboard", elem_id="evaluation-status", visible=False,scale=1,min_width=1200)
eval_status = gr.Textbox(label="π οΈ Evaluation Status", interactive=False,scale=1,min_width=1200)
with gr.TabItem("π€ Submission-Pro"):
gr.Markdown("""
<div class="submission-section" style="border: 3px solid #6a1b9a; padding: 20px; border-radius: 12px; box-shadow: 0 4px 10px rgba(106, 27, 154, 0.2);">
<h2 style="color: #6a1b9a; text-align: center;">Submit Your Predictions</h2>
<p style="font-size: 1.2em; color: #333; text-align: center;">Upload your prediction file and provide your model name to evaluate and optionally submit your results to the leaderboard.</p>
</div>
""")
with gr.Row(elem_id="submission-fields"):
file_input = gr.File(label="π Upload Prediction CSV for Mobile-MMLU-Pro", file_types=[".csv"], interactive=True,scale=1, min_width=12000)
model_name_input = gr.Textbox(label="π·οΈ Model Name", placeholder="Enter your model name",scale=1, min_width=800)
Team_name_input = gr.Textbox(label="π·οΈ Team Name", placeholder="Enter your Team name",scale=1, min_width=800)
with gr.Row(elem_id="submission-results"):
overall_accuracy_display = gr.Number(label="π Overall Accuracy (%)", interactive=False,scale=1,min_width=1200)
with gr.Row(elem_id="submission-buttons"):
eval_button_pro = gr.Button("π Evaluate",scale=1,min_width=1200)
submit_button_pro = gr.Button("π€ Prove and Submit to Leaderboard", elem_id="evaluation-status", visible=False,scale=1,min_width=1200)
eval_status = gr.Textbox(label="π οΈ Evaluation Status", interactive=False,scale=1,min_width=1200)
def handle_evaluation(file, model_name, Team_name):
if not file:
return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
if not model_name or model_name.strip() == "":
return "Error: Please enter a model name.", 0, gr.update(visible=False)
if not Team_name or Team_name.strip() == "":
return "Error: Please enter a Team name.", 0, gr.update(visible=False)
try:
# Load predictions file
predictions_df = pd.read_csv(file.name)
# Validate required columns
required_columns = ['question_id', 'predicted_answer']
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
if missing_columns:
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
0, gr.update(visible=False))
# Load ground truth
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except Exception as e:
return f"Error loading ground truth: {e}", 0, gr.update(visible=False)
# Perform evaluation calculations
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
overall_accuracy = (correct_predictions / total_predictions * 100) if total_predictions > 0 else 0
return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
except Exception as e:
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
def handle_evaluation_pro(file, model_name, Team_name):
if not file:
return "Error: Please upload a prediction file.", 0, gr.update(visible=False)
if not model_name or model_name.strip() == "":
return "Error: Please enter a model name.", 0, gr.update(visible=False)
if not Team_name or Team_name.strip() == "":
return "Error: Please enter a Team name.", 0, gr.update(visible=False)
try:
# Load predictions file
predictions_df = pd.read_csv(file.name)
# Validate required columns
required_columns = ['question_id', 'predicted_answer']
missing_columns = [col for col in required_columns if col not in predictions_df.columns]
if missing_columns:
return (f"Error: Missing required columns in prediction file: {', '.join(missing_columns)}.",
0, gr.update(visible=False))
# Load ground truth
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except Exception as e:
return f"Error loading ground truth: {e}", 0, gr.update(visible=False)
# Perform evaluation calculations
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
overall_accuracy = (correct_predictions / total_predictions * 100) if total_predictions > 0 else 0
return "Evaluation completed successfully.", overall_accuracy, gr.update(visible=True)
except Exception as e:
return f"Error during evaluation: {str(e)}", 0, gr.update(visible=False)
def handle_submission(file, model_name,Team_name):
# Handle leaderboard submission
status, _ = evaluate_predictions(file, model_name,Team_name, add_to_leaderboard=True)
return f"Submission to leaderboard completed: {status}"
def handle_submission_pro(file, model_name,Team_name):
# Handle leaderboard submission
status, _ = evaluate_predictions_pro(file, model_name,Team_name, add_to_leaderboard=True)
return f"Submission to leaderboard completed: {status}"
# Connect button clicks to the functions
eval_button.click(
handle_evaluation,
inputs=[file_input, model_name_input,Team_name_input],
outputs=[eval_status, overall_accuracy_display, submit_button],
)
eval_button_pro.click(
handle_evaluation_pro,
inputs=[file_input, model_name_input,Team_name_input],
outputs=[eval_status, overall_accuracy_display, submit_button_pro],
)
submit_button_pro.click(
handle_submission_pro,
inputs=[file_input, model_name_input,Team_name_input],
outputs=[eval_status],
)
submit_button.click(
handle_submission,
inputs=[file_input, model_name_input,Team_name_input],
outputs=[eval_status],
)
with gr.TabItem("π
Leaderboard"):
leaderboard_table = gr.Dataframe(
value=load_leaderboard(),
label="Leaderboard",
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(
lambda: load_leaderboard(),
inputs=[],
outputs=[leaderboard_table],
)
with gr.TabItem("π
Leaderboard-pro"):
leaderboard_table = gr.Dataframe(
value=load_leaderboard,
label="Leaderboard",
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(
lambda: load_leaderboard,
inputs=[],
outputs=[leaderboard_table],
)
# Post-Tabs Section
# gr.Markdown("""
# <section class="post-tabs">
# <h2>Ready to Compete?</h2>
# <h3>
# Submit your predictions today and make your mark in advancing mobile AI technologies.
# Show the world what your model can achieve!
# <h3>
# </section>
# """)
# Post-Tabs Section
gr.Markdown("""
<section class="post-tabs">
<h2 style="color: #6a1b9a; text-align: center; font-size: 2.5em; margin-bottom: 15px;">π Ready to Compete? π</h2>
<p style="font-size: 1.5em; text-align: center; color: #ffffff; line-height: 1.6; margin-bottom: 20px;">
Don't miss this opportunity to showcase your expertise in mobile AI! Participate in the competition,
submit your predictions, and compare your results with the best in the field.
</p>
</section>
""")
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_TEXT, lines=18,
label="",elem_id="citation-button",
show_copy_button=True)
# Footer Section
gr.Markdown("""
<footer>
<h2>Stay Connected</h2>
<p>
Follow us on social media or contact us for any queries. Let's shape the future of AI together!
</p>
<div class="social-links">
<a href="https://vila-lab.github.io/Mobile_MMLU/" target="_blank" class="social-link">π Website</a>
<a href="https://github.com/VILA-Lab/Mobile-MMLU">π» GitHub</a>
</div>
</footer>
""",elem_id="custom-footer")
demo.launch()
|