Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -258,25 +258,68 @@ def load_leaderboard():
|
|
| 258 |
print("Loading leaderboard data...")
|
| 259 |
return pd.read_csv(LEADERBOARD_FILE)
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
# Build Gradio App
|
| 262 |
with gr.Blocks() as demo:
|
| 263 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
|
|
|
| 264 |
with gr.Tabs():
|
|
|
|
| 265 |
with gr.TabItem("π
Submission"):
|
| 266 |
file_input = gr.File(label="Upload Prediction CSV")
|
| 267 |
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
| 268 |
-
|
| 269 |
-
leaderboard_table = gr.Dataframe(
|
| 270 |
value=load_leaderboard(),
|
| 271 |
-
label="Leaderboard",
|
| 272 |
interactive=False,
|
| 273 |
wrap=True,
|
| 274 |
)
|
|
|
|
| 275 |
eval_button.click(
|
| 276 |
-
|
| 277 |
inputs=[file_input],
|
| 278 |
-
outputs=[eval_status,
|
| 279 |
)
|
|
|
|
|
|
|
| 280 |
with gr.TabItem("π
Leaderboard"):
|
| 281 |
leaderboard_table = gr.Dataframe(
|
| 282 |
value=load_leaderboard(),
|
|
@@ -284,8 +327,15 @@ with gr.Blocks() as demo:
|
|
| 284 |
interactive=False,
|
| 285 |
wrap=True,
|
| 286 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 289 |
|
| 290 |
demo.launch()
|
| 291 |
|
|
|
|
|
|
| 258 |
print("Loading leaderboard data...")
|
| 259 |
return pd.read_csv(LEADERBOARD_FILE)
|
| 260 |
|
| 261 |
+
def evaluate_predictions_and_update_leaderboard(prediction_file):
|
| 262 |
+
"""
|
| 263 |
+
Evaluate predictions and update the leaderboard.
|
| 264 |
+
"""
|
| 265 |
+
ground_truth_file = "ground_truth.csv"
|
| 266 |
+
if not os.path.exists(ground_truth_file):
|
| 267 |
+
return "Ground truth file not found.", None
|
| 268 |
+
if not prediction_file:
|
| 269 |
+
return "Prediction file not uploaded.", None
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
predictions_df = pd.read_csv(prediction_file.name)
|
| 273 |
+
ground_truth_df = pd.read_csv(ground_truth_file)
|
| 274 |
+
model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
| 275 |
+
|
| 276 |
+
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
| 277 |
+
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
| 278 |
+
|
| 279 |
+
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
| 280 |
+
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
| 281 |
+
total_predictions = len(merged_df)
|
| 282 |
+
total_valid_predictions = len(valid_predictions)
|
| 283 |
+
|
| 284 |
+
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
| 285 |
+
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
| 286 |
+
|
| 287 |
+
results = {
|
| 288 |
+
'model_name': model_name,
|
| 289 |
+
'overall_accuracy': overall_accuracy,
|
| 290 |
+
'valid_accuracy': valid_accuracy,
|
| 291 |
+
'correct_predictions': correct_predictions,
|
| 292 |
+
'total_questions': total_predictions,
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
update_leaderboard(results)
|
| 296 |
+
return "Evaluation completed successfully! Leaderboard updated.", load_leaderboard()
|
| 297 |
+
except Exception as e:
|
| 298 |
+
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
| 299 |
+
|
| 300 |
# Build Gradio App
|
| 301 |
with gr.Blocks() as demo:
|
| 302 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
| 303 |
+
|
| 304 |
with gr.Tabs():
|
| 305 |
+
# Submission Tab
|
| 306 |
with gr.TabItem("π
Submission"):
|
| 307 |
file_input = gr.File(label="Upload Prediction CSV")
|
| 308 |
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
| 309 |
+
leaderboard_table_submission = gr.Dataframe(
|
|
|
|
| 310 |
value=load_leaderboard(),
|
| 311 |
+
label="Leaderboard (Preview)",
|
| 312 |
interactive=False,
|
| 313 |
wrap=True,
|
| 314 |
)
|
| 315 |
+
eval_button = gr.Button("Evaluate and Update Leaderboard")
|
| 316 |
eval_button.click(
|
| 317 |
+
evaluate_predictions_and_update_leaderboard,
|
| 318 |
inputs=[file_input],
|
| 319 |
+
outputs=[eval_status, leaderboard_table_submission],
|
| 320 |
)
|
| 321 |
+
|
| 322 |
+
# Leaderboard Tab
|
| 323 |
with gr.TabItem("π
Leaderboard"):
|
| 324 |
leaderboard_table = gr.Dataframe(
|
| 325 |
value=load_leaderboard(),
|
|
|
|
| 327 |
interactive=False,
|
| 328 |
wrap=True,
|
| 329 |
)
|
| 330 |
+
refresh_button = gr.Button("Refresh Leaderboard")
|
| 331 |
+
refresh_button.click(
|
| 332 |
+
lambda: load_leaderboard(),
|
| 333 |
+
inputs=[],
|
| 334 |
+
outputs=[leaderboard_table],
|
| 335 |
+
)
|
| 336 |
|
| 337 |
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
| 338 |
|
| 339 |
demo.launch()
|
| 340 |
|
| 341 |
+
|