Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
@@ -5,6 +183,7 @@ import re
|
|
5 |
from datetime import datetime
|
6 |
|
7 |
LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
|
|
8 |
|
9 |
def clean_answer(answer):
|
10 |
if pd.isna(answer):
|
@@ -12,53 +191,17 @@ def clean_answer(answer):
|
|
12 |
answer = str(answer)
|
13 |
clean = re.sub(r'[^A-Da-d]', '', answer)
|
14 |
if clean:
|
15 |
-
|
16 |
-
if first_letter in ['A', 'B', 'C', 'D']:
|
17 |
-
return first_letter
|
18 |
return None
|
19 |
|
20 |
-
def write_evaluation_results(results, output_file):
|
21 |
-
os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
|
22 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
23 |
-
|
24 |
-
output_text = [
|
25 |
-
f"Evaluation Results for Model: {results['model_name']}",
|
26 |
-
f"Timestamp: {timestamp}",
|
27 |
-
"-" * 50,
|
28 |
-
f"Overall Accuracy (including invalid): {results['overall_accuracy']:.2%}",
|
29 |
-
f"Accuracy (valid predictions only): {results['valid_accuracy']:.2%}",
|
30 |
-
f"Total Questions: {results['total_questions']}",
|
31 |
-
f"Valid Predictions: {results['valid_predictions']}",
|
32 |
-
f"Invalid/Malformed Predictions: {results['invalid_predictions']}",
|
33 |
-
f"Correct Predictions: {results['correct_predictions']}",
|
34 |
-
"\nPerformance by Field:",
|
35 |
-
"-" * 50
|
36 |
-
]
|
37 |
-
|
38 |
-
for field, metrics in results['field_performance'].items():
|
39 |
-
field_results = [
|
40 |
-
f"\nField: {field}",
|
41 |
-
f"Accuracy (including invalid): {metrics['accuracy']:.2%}",
|
42 |
-
f"Accuracy (valid only): {metrics['valid_accuracy']:.2%}",
|
43 |
-
f"Correct: {metrics['correct']}/{metrics['total']}",
|
44 |
-
f"Invalid predictions: {metrics['invalid']}"
|
45 |
-
]
|
46 |
-
output_text.extend(field_results)
|
47 |
-
|
48 |
-
with open(output_file, 'w') as f:
|
49 |
-
f.write('\n'.join(output_text))
|
50 |
-
print('\n'.join(output_text))
|
51 |
-
print(f"\nResults have been saved to: {output_file}")
|
52 |
-
|
53 |
def update_leaderboard(results):
|
54 |
-
# Add results to the leaderboard file
|
55 |
new_entry = {
|
56 |
"Model Name": results['model_name'],
|
57 |
-
"Overall Accuracy":
|
58 |
-
"Valid Accuracy":
|
59 |
"Correct Predictions": results['correct_predictions'],
|
60 |
"Total Questions": results['total_questions'],
|
61 |
-
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
62 |
}
|
63 |
leaderboard_df = pd.DataFrame([new_entry])
|
64 |
if os.path.exists(LEADERBOARD_FILE):
|
@@ -66,111 +209,69 @@ def update_leaderboard(results):
|
|
66 |
leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
67 |
leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
68 |
|
69 |
-
def display_leaderboard():
|
70 |
-
if not os.path.exists(LEADERBOARD_FILE):
|
71 |
-
return "Leaderboard is empty."
|
72 |
-
leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
|
73 |
-
return leaderboard_df.to_markdown(index=False)
|
74 |
-
|
75 |
def evaluate_predictions(prediction_file):
|
76 |
-
ground_truth_file = "ground_truth.csv"
|
77 |
-
if not prediction_file:
|
78 |
-
return "Prediction file not uploaded", None
|
79 |
-
|
80 |
if not os.path.exists(ground_truth_file):
|
81 |
-
return "Ground truth file not found"
|
|
|
|
|
82 |
|
83 |
try:
|
84 |
predictions_df = pd.read_csv(prediction_file.name)
|
85 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
filename = os.path.basename(prediction_file.name)
|
90 |
-
if "_" in filename and "." in filename:
|
91 |
-
model_name = filename.split('_')[1].split('.')[0]
|
92 |
-
else:
|
93 |
-
model_name = "unknown_model"
|
94 |
-
except IndexError:
|
95 |
-
model_name = "unknown_model"
|
96 |
-
|
97 |
-
# Merge dataframes
|
98 |
-
merged_df = pd.merge(
|
99 |
-
predictions_df,
|
100 |
-
ground_truth_df,
|
101 |
-
on='question_id',
|
102 |
-
how='inner'
|
103 |
-
)
|
104 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
105 |
-
|
106 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
107 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
108 |
total_predictions = len(merged_df)
|
109 |
total_valid_predictions = len(valid_predictions)
|
110 |
|
111 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
112 |
-
valid_accuracy =
|
113 |
-
correct_predictions / total_valid_predictions
|
114 |
-
if total_valid_predictions > 0
|
115 |
-
else 0
|
116 |
-
)
|
117 |
-
|
118 |
-
field_metrics = {}
|
119 |
-
for field in merged_df['Field'].unique():
|
120 |
-
field_data = merged_df[merged_df['Field'] == field]
|
121 |
-
field_valid_data = field_data.dropna(subset=['pred_answer'])
|
122 |
-
|
123 |
-
field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
|
124 |
-
field_total = len(field_data)
|
125 |
-
field_valid_total = len(field_valid_data)
|
126 |
-
field_invalid = field_total - field_valid_total
|
127 |
-
|
128 |
-
field_metrics[field] = {
|
129 |
-
'accuracy': field_correct / field_total if field_total > 0 else 0,
|
130 |
-
'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
|
131 |
-
'correct': field_correct,
|
132 |
-
'total': field_total,
|
133 |
-
'invalid': field_invalid
|
134 |
-
}
|
135 |
|
136 |
results = {
|
137 |
'model_name': model_name,
|
138 |
'overall_accuracy': overall_accuracy,
|
139 |
'valid_accuracy': valid_accuracy,
|
140 |
-
'total_questions': total_predictions,
|
141 |
-
'valid_predictions': total_valid_predictions,
|
142 |
-
'invalid_predictions': invalid_predictions,
|
143 |
'correct_predictions': correct_predictions,
|
144 |
-
'
|
145 |
}
|
146 |
|
147 |
update_leaderboard(results)
|
148 |
-
|
149 |
-
write_evaluation_results(results, output_file)
|
150 |
-
return "Evaluation completed successfully! Leaderboard updated.", output_file
|
151 |
-
|
152 |
except Exception as e:
|
153 |
-
return f"Error during evaluation: {str(e)}"
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
|
160 |
-
|
|
|
161 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
162 |
-
with gr.
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import pandas as pd
|
3 |
+
# import os
|
4 |
+
# import re
|
5 |
+
# from datetime import datetime
|
6 |
+
|
7 |
+
# LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
8 |
+
|
9 |
+
# def clean_answer(answer):
|
10 |
+
# if pd.isna(answer):
|
11 |
+
# return None
|
12 |
+
# answer = str(answer)
|
13 |
+
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
14 |
+
# if clean:
|
15 |
+
# first_letter = clean[0].upper()
|
16 |
+
# if first_letter in ['A', 'B', 'C', 'D']:
|
17 |
+
# return first_letter
|
18 |
+
# return None
|
19 |
+
|
20 |
+
# def write_evaluation_results(results, output_file):
|
21 |
+
# os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
|
22 |
+
# timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
23 |
+
|
24 |
+
# output_text = [
|
25 |
+
# f"Evaluation Results for Model: {results['model_name']}",
|
26 |
+
# f"Timestamp: {timestamp}",
|
27 |
+
# "-" * 50,
|
28 |
+
# f"Overall Accuracy (including invalid): {results['overall_accuracy']:.2%}",
|
29 |
+
# f"Accuracy (valid predictions only): {results['valid_accuracy']:.2%}",
|
30 |
+
# f"Total Questions: {results['total_questions']}",
|
31 |
+
# f"Valid Predictions: {results['valid_predictions']}",
|
32 |
+
# f"Invalid/Malformed Predictions: {results['invalid_predictions']}",
|
33 |
+
# f"Correct Predictions: {results['correct_predictions']}",
|
34 |
+
# "\nPerformance by Field:",
|
35 |
+
# "-" * 50
|
36 |
+
# ]
|
37 |
+
|
38 |
+
# for field, metrics in results['field_performance'].items():
|
39 |
+
# field_results = [
|
40 |
+
# f"\nField: {field}",
|
41 |
+
# f"Accuracy (including invalid): {metrics['accuracy']:.2%}",
|
42 |
+
# f"Accuracy (valid only): {metrics['valid_accuracy']:.2%}",
|
43 |
+
# f"Correct: {metrics['correct']}/{metrics['total']}",
|
44 |
+
# f"Invalid predictions: {metrics['invalid']}"
|
45 |
+
# ]
|
46 |
+
# output_text.extend(field_results)
|
47 |
+
|
48 |
+
# with open(output_file, 'w') as f:
|
49 |
+
# f.write('\n'.join(output_text))
|
50 |
+
# print('\n'.join(output_text))
|
51 |
+
# print(f"\nResults have been saved to: {output_file}")
|
52 |
+
|
53 |
+
# def update_leaderboard(results):
|
54 |
+
# # Add results to the leaderboard file
|
55 |
+
# new_entry = {
|
56 |
+
# "Model Name": results['model_name'],
|
57 |
+
# "Overall Accuracy": f"{results['overall_accuracy']:.2%}",
|
58 |
+
# "Valid Accuracy": f"{results['valid_accuracy']:.2%}",
|
59 |
+
# "Correct Predictions": results['correct_predictions'],
|
60 |
+
# "Total Questions": results['total_questions'],
|
61 |
+
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
62 |
+
# }
|
63 |
+
# leaderboard_df = pd.DataFrame([new_entry])
|
64 |
+
# if os.path.exists(LEADERBOARD_FILE):
|
65 |
+
# existing_df = pd.read_csv(LEADERBOARD_FILE)
|
66 |
+
# leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
67 |
+
# leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
68 |
+
|
69 |
+
# def display_leaderboard():
|
70 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
71 |
+
# return "Leaderboard is empty."
|
72 |
+
# leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
|
73 |
+
# return leaderboard_df.to_markdown(index=False)
|
74 |
+
|
75 |
+
# def evaluate_predictions(prediction_file):
|
76 |
+
# ground_truth_file = "ground_truth.csv" # Specify the path to the ground truth file
|
77 |
+
# if not prediction_file:
|
78 |
+
# return "Prediction file not uploaded", None
|
79 |
+
|
80 |
+
# if not os.path.exists(ground_truth_file):
|
81 |
+
# return "Ground truth file not found", None
|
82 |
+
|
83 |
+
# try:
|
84 |
+
# predictions_df = pd.read_csv(prediction_file.name)
|
85 |
+
# ground_truth_df = pd.read_csv(ground_truth_file)
|
86 |
+
|
87 |
+
# # Extract model name
|
88 |
+
# try:
|
89 |
+
# filename = os.path.basename(prediction_file.name)
|
90 |
+
# if "_" in filename and "." in filename:
|
91 |
+
# model_name = filename.split('_')[1].split('.')[0]
|
92 |
+
# else:
|
93 |
+
# model_name = "unknown_model"
|
94 |
+
# except IndexError:
|
95 |
+
# model_name = "unknown_model"
|
96 |
+
|
97 |
+
# # Merge dataframes
|
98 |
+
# merged_df = pd.merge(
|
99 |
+
# predictions_df,
|
100 |
+
# ground_truth_df,
|
101 |
+
# on='question_id',
|
102 |
+
# how='inner'
|
103 |
+
# )
|
104 |
+
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
105 |
+
# invalid_predictions = merged_df['pred_answer'].isna().sum()
|
106 |
+
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
107 |
+
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
108 |
+
# total_predictions = len(merged_df)
|
109 |
+
# total_valid_predictions = len(valid_predictions)
|
110 |
+
|
111 |
+
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
112 |
+
# valid_accuracy = (
|
113 |
+
# correct_predictions / total_valid_predictions
|
114 |
+
# if total_valid_predictions > 0
|
115 |
+
# else 0
|
116 |
+
# )
|
117 |
+
|
118 |
+
# field_metrics = {}
|
119 |
+
# for field in merged_df['Field'].unique():
|
120 |
+
# field_data = merged_df[merged_df['Field'] == field]
|
121 |
+
# field_valid_data = field_data.dropna(subset=['pred_answer'])
|
122 |
+
|
123 |
+
# field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
|
124 |
+
# field_total = len(field_data)
|
125 |
+
# field_valid_total = len(field_valid_data)
|
126 |
+
# field_invalid = field_total - field_valid_total
|
127 |
+
|
128 |
+
# field_metrics[field] = {
|
129 |
+
# 'accuracy': field_correct / field_total if field_total > 0 else 0,
|
130 |
+
# 'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
|
131 |
+
# 'correct': field_correct,
|
132 |
+
# 'total': field_total,
|
133 |
+
# 'invalid': field_invalid
|
134 |
+
# }
|
135 |
+
|
136 |
+
# results = {
|
137 |
+
# 'model_name': model_name,
|
138 |
+
# 'overall_accuracy': overall_accuracy,
|
139 |
+
# 'valid_accuracy': valid_accuracy,
|
140 |
+
# 'total_questions': total_predictions,
|
141 |
+
# 'valid_predictions': total_valid_predictions,
|
142 |
+
# 'invalid_predictions': invalid_predictions,
|
143 |
+
# 'correct_predictions': correct_predictions,
|
144 |
+
# 'field_performance': field_metrics
|
145 |
+
# }
|
146 |
+
|
147 |
+
# update_leaderboard(results)
|
148 |
+
# output_file = "evaluation_results.txt"
|
149 |
+
# write_evaluation_results(results, output_file)
|
150 |
+
# return "Evaluation completed successfully! Leaderboard updated.", output_file
|
151 |
+
|
152 |
+
# except Exception as e:
|
153 |
+
# return f"Error during evaluation: {str(e)}", None
|
154 |
+
|
155 |
+
# # Gradio Interface
|
156 |
+
# description = "Upload a prediction CSV file to evaluate predictions against the ground truth and update the leaderboard."
|
157 |
+
|
158 |
+
# demo = gr.Blocks()
|
159 |
+
|
160 |
+
# with demo:
|
161 |
+
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
162 |
+
# with gr.Tab("Evaluate"):
|
163 |
+
# file_input = gr.File(label="Upload Prediction CSV")
|
164 |
+
# eval_status = gr.Textbox(label="Evaluation Status")
|
165 |
+
# eval_results_file = gr.File(label="Download Evaluation Results")
|
166 |
+
# eval_button = gr.Button("Evaluate")
|
167 |
+
# eval_button.click(
|
168 |
+
# evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file]
|
169 |
+
# )
|
170 |
+
# with gr.Tab("Leaderboard"):
|
171 |
+
# leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False)
|
172 |
+
# refresh_button = gr.Button("Refresh Leaderboard")
|
173 |
+
# refresh_button.click(display_leaderboard, outputs=leaderboard_text)
|
174 |
+
|
175 |
+
# if __name__ == "__main__":
|
176 |
+
# demo.launch()
|
177 |
+
|
178 |
+
|
179 |
import gradio as gr
|
180 |
import pandas as pd
|
181 |
import os
|
|
|
183 |
from datetime import datetime
|
184 |
|
185 |
LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
186 |
+
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
187 |
|
188 |
def clean_answer(answer):
|
189 |
if pd.isna(answer):
|
|
|
191 |
answer = str(answer)
|
192 |
clean = re.sub(r'[^A-Da-d]', '', answer)
|
193 |
if clean:
|
194 |
+
return clean[0].upper()
|
|
|
|
|
195 |
return None
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
def update_leaderboard(results):
|
|
|
198 |
new_entry = {
|
199 |
"Model Name": results['model_name'],
|
200 |
+
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
201 |
+
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
202 |
"Correct Predictions": results['correct_predictions'],
|
203 |
"Total Questions": results['total_questions'],
|
204 |
+
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
205 |
}
|
206 |
leaderboard_df = pd.DataFrame([new_entry])
|
207 |
if os.path.exists(LEADERBOARD_FILE):
|
|
|
209 |
leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
210 |
leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
def evaluate_predictions(prediction_file):
|
213 |
+
ground_truth_file = "ground_truth.csv"
|
|
|
|
|
|
|
214 |
if not os.path.exists(ground_truth_file):
|
215 |
+
return "Ground truth file not found."
|
216 |
+
if not prediction_file:
|
217 |
+
return "Prediction file not uploaded."
|
218 |
|
219 |
try:
|
220 |
predictions_df = pd.read_csv(prediction_file.name)
|
221 |
ground_truth_df = pd.read_csv(ground_truth_file)
|
222 |
+
model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
223 |
+
|
224 |
+
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
226 |
+
|
227 |
valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
228 |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
229 |
total_predictions = len(merged_df)
|
230 |
total_valid_predictions = len(valid_predictions)
|
231 |
|
232 |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
233 |
+
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
results = {
|
236 |
'model_name': model_name,
|
237 |
'overall_accuracy': overall_accuracy,
|
238 |
'valid_accuracy': valid_accuracy,
|
|
|
|
|
|
|
239 |
'correct_predictions': correct_predictions,
|
240 |
+
'total_questions': total_predictions,
|
241 |
}
|
242 |
|
243 |
update_leaderboard(results)
|
244 |
+
return "Evaluation completed successfully! Leaderboard updated."
|
|
|
|
|
|
|
245 |
except Exception as e:
|
246 |
+
return f"Error during evaluation: {str(e)}"
|
247 |
|
248 |
+
def load_leaderboard():
|
249 |
+
if not os.path.exists(LEADERBOARD_FILE):
|
250 |
+
return pd.DataFrame({"Message": ["Leaderboard is empty."]})
|
251 |
+
return pd.read_csv(LEADERBOARD_FILE)
|
252 |
|
253 |
+
# Build Gradio App
|
254 |
+
with gr.Blocks() as demo:
|
255 |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
256 |
+
with gr.Tabs():
|
257 |
+
with gr.TabItem("🏅 Submission"):
|
258 |
+
file_input = gr.File(label="Upload Prediction CSV")
|
259 |
+
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
260 |
+
eval_button = gr.Button("Evaluate and Update Leaderboard")
|
261 |
+
eval_button.click(
|
262 |
+
evaluate_predictions,
|
263 |
+
inputs=[file_input],
|
264 |
+
outputs=[eval_status],
|
265 |
+
)
|
266 |
+
with gr.TabItem("🏅 Leaderboard"):
|
267 |
+
leaderboard_table = gr.Dataframe(
|
268 |
+
value=load_leaderboard(),
|
269 |
+
label="Leaderboard",
|
270 |
+
interactive=False,
|
271 |
+
wrap=True,
|
272 |
+
)
|
273 |
+
|
274 |
+
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
275 |
+
|
276 |
+
demo.launch()
|
277 |
+
|