Update app.py
Browse files
app.py
CHANGED
@@ -148,33 +148,196 @@ initialize_leaderboard_file()
|
|
148 |
# Function to set default mode
|
149 |
import gradio as gr
|
150 |
|
151 |
-
# Ensure CSS is correctly defined
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
css_tech_theme = """
|
153 |
body {
|
154 |
-
background-color: #f4f6fa;
|
155 |
-
color: #333333;
|
156 |
font-family: 'Roboto', sans-serif;
|
157 |
-
|
|
|
|
|
|
|
158 |
}
|
159 |
-
|
160 |
.center-content {
|
161 |
display: flex;
|
162 |
flex-direction: column;
|
163 |
align-items: center;
|
164 |
justify-content: center;
|
165 |
text-align: center;
|
166 |
-
margin: 30px 0;
|
167 |
padding: 20px;
|
|
|
|
|
|
|
|
|
168 |
}
|
169 |
-
|
170 |
-
|
171 |
-
color: #
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
}
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
}
|
179 |
"""
|
180 |
|
@@ -185,34 +348,23 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
185 |
<h1>π Mobile-MMLU Benchmark Competition</h1>
|
186 |
<h2>π Welcome to the Competition</h2>
|
187 |
<p>
|
188 |
-
Welcome to the Mobile-MMLU Benchmark Competition.
|
189 |
view the leaderboard, and track your performance!
|
190 |
</p>
|
191 |
<hr>
|
192 |
</div>
|
193 |
""")
|
194 |
|
195 |
-
|
196 |
with gr.Tabs(elem_id="tabs"):
|
197 |
with gr.TabItem("π Overview"):
|
198 |
gr.Markdown("""
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
|
207 |
-
2. **Generate Predictions**
|
208 |
-
Use your LLM to answer the dataset questions. Format your predictions as a CSV file.
|
209 |
-
3. **Submit Predictions**
|
210 |
-
Upload your predictions on this platform.
|
211 |
-
4. **Evaluation**
|
212 |
-
Submissions are scored on accuracy.
|
213 |
-
5. **Leaderboard**
|
214 |
-
View real-time rankings on the leaderboard.
|
215 |
-
---
|
216 |
""")
|
217 |
|
218 |
with gr.TabItem("π€ Submission"):
|
@@ -229,10 +381,7 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
229 |
|
230 |
def handle_evaluation(file, model_name, add_to_leaderboard):
|
231 |
status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
|
232 |
-
if leaderboard.empty
|
233 |
-
overall_accuracy = 0
|
234 |
-
else:
|
235 |
-
overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"]
|
236 |
return status, overall_accuracy
|
237 |
|
238 |
eval_button.click(
|
@@ -255,6 +404,6 @@ with gr.Blocks(css=css_tech_theme) as demo:
|
|
255 |
outputs=[leaderboard_table],
|
256 |
)
|
257 |
|
258 |
-
gr.Markdown(
|
259 |
|
260 |
-
demo.launch()
|
|
|
148 |
# Function to set default mode
|
149 |
import gradio as gr
|
150 |
|
151 |
+
# # Ensure CSS is correctly defined
|
152 |
+
# css_tech_theme = """
|
153 |
+
# body {
|
154 |
+
# background-color: #f4f6fa;
|
155 |
+
# color: #333333;
|
156 |
+
# font-family: 'Roboto', sans-serif;
|
157 |
+
# line-height: 1.8;
|
158 |
+
# }
|
159 |
+
|
160 |
+
# .center-content {
|
161 |
+
# display: flex;
|
162 |
+
# flex-direction: column;
|
163 |
+
# align-items: center;
|
164 |
+
# justify-content: center;
|
165 |
+
# text-align: center;
|
166 |
+
# margin: 30px 0;
|
167 |
+
# padding: 20px;
|
168 |
+
# }
|
169 |
+
|
170 |
+
# h1, h2 {
|
171 |
+
# color: #5e35b1;
|
172 |
+
# margin: 15px 0;
|
173 |
+
# text-align: center;
|
174 |
+
# }
|
175 |
+
# img {
|
176 |
+
# width: 100px;
|
177 |
+
# height: 100px;
|
178 |
+
# }
|
179 |
+
# """
|
180 |
+
|
181 |
+
# # Create the Gradio Interface
|
182 |
+
# with gr.Blocks(css=css_tech_theme) as demo:
|
183 |
+
# gr.Markdown("""
|
184 |
+
# <div class="center-content">
|
185 |
+
# <h1>π Mobile-MMLU Benchmark Competition</h1>
|
186 |
+
# <h2>π Welcome to the Competition</h2>
|
187 |
+
# <p>
|
188 |
+
# Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions,
|
189 |
+
# view the leaderboard, and track your performance!
|
190 |
+
# </p>
|
191 |
+
# <hr>
|
192 |
+
# </div>
|
193 |
+
# """)
|
194 |
+
|
195 |
+
|
196 |
+
# with gr.Tabs(elem_id="tabs"):
|
197 |
+
# with gr.TabItem("π Overview"):
|
198 |
+
# gr.Markdown("""
|
199 |
+
# **Welcome to the Mobile-MMLU Benchmark Competition! Evaluate mobile-compatible Large Language Models (LLMs) on 16,186 scenario-based and factual questions across 80 fields**.
|
200 |
+
# ---
|
201 |
+
# ## What is Mobile-MMLU?
|
202 |
+
# Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
|
203 |
+
# ---
|
204 |
+
# ## How It Works
|
205 |
+
# 1. **Download the Dataset**
|
206 |
+
# Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
|
207 |
+
# 2. **Generate Predictions**
|
208 |
+
# Use your LLM to answer the dataset questions. Format your predictions as a CSV file.
|
209 |
+
# 3. **Submit Predictions**
|
210 |
+
# Upload your predictions on this platform.
|
211 |
+
# 4. **Evaluation**
|
212 |
+
# Submissions are scored on accuracy.
|
213 |
+
# 5. **Leaderboard**
|
214 |
+
# View real-time rankings on the leaderboard.
|
215 |
+
# ---
|
216 |
+
# """)
|
217 |
+
|
218 |
+
# with gr.TabItem("π€ Submission"):
|
219 |
+
# with gr.Row():
|
220 |
+
# file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
|
221 |
+
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
|
222 |
+
|
223 |
+
# with gr.Row():
|
224 |
+
# overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
|
225 |
+
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
|
226 |
+
|
227 |
+
# eval_button = gr.Button("Evaluate")
|
228 |
+
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
229 |
+
|
230 |
+
# def handle_evaluation(file, model_name, add_to_leaderboard):
|
231 |
+
# status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
|
232 |
+
# if leaderboard.empty:
|
233 |
+
# overall_accuracy = 0
|
234 |
+
# else:
|
235 |
+
# overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"]
|
236 |
+
# return status, overall_accuracy
|
237 |
+
|
238 |
+
# eval_button.click(
|
239 |
+
# handle_evaluation,
|
240 |
+
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
|
241 |
+
# outputs=[eval_status, overall_accuracy_display],
|
242 |
+
# )
|
243 |
+
|
244 |
+
# with gr.TabItem("π
Leaderboard"):
|
245 |
+
# leaderboard_table = gr.Dataframe(
|
246 |
+
# value=load_leaderboard(),
|
247 |
+
# label="Leaderboard",
|
248 |
+
# interactive=False,
|
249 |
+
# wrap=True,
|
250 |
+
# )
|
251 |
+
# refresh_button = gr.Button("Refresh Leaderboard")
|
252 |
+
# refresh_button.click(
|
253 |
+
# lambda: load_leaderboard(),
|
254 |
+
# inputs=[],
|
255 |
+
# outputs=[leaderboard_table],
|
256 |
+
# )
|
257 |
+
|
258 |
+
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
259 |
+
|
260 |
+
# demo.launch()
|
261 |
+
|
262 |
+
import gradio as gr
|
263 |
+
|
264 |
+
# Custom CSS to match website style
|
265 |
css_tech_theme = """
|
266 |
body {
|
|
|
|
|
267 |
font-family: 'Roboto', sans-serif;
|
268 |
+
margin: 0;
|
269 |
+
padding: 0;
|
270 |
+
color: #333;
|
271 |
+
background: #f4f6fa;
|
272 |
}
|
|
|
273 |
.center-content {
|
274 |
display: flex;
|
275 |
flex-direction: column;
|
276 |
align-items: center;
|
277 |
justify-content: center;
|
278 |
text-align: center;
|
|
|
279 |
padding: 20px;
|
280 |
+
background: linear-gradient(135deg, #6a1b9a, #64b5f6);
|
281 |
+
color: #ffffff;
|
282 |
+
border-radius: 10px;
|
283 |
+
margin: 20px;
|
284 |
}
|
285 |
+
.center-content h1, .center-content h2 {
|
286 |
+
margin: 10px 0;
|
287 |
+
color: #ffffff;
|
288 |
+
}
|
289 |
+
.center-content p {
|
290 |
+
font-size: 1.2em;
|
291 |
+
line-height: 1.8;
|
292 |
+
color: #e1e8f0;
|
293 |
+
}
|
294 |
+
.center-content hr {
|
295 |
+
border: 1px solid #ffffff;
|
296 |
+
width: 80%;
|
297 |
+
margin: 20px 0;
|
298 |
+
}
|
299 |
+
.tabs {
|
300 |
+
display: flex;
|
301 |
+
justify-content: center;
|
302 |
+
margin: 20px 0;
|
303 |
+
}
|
304 |
+
.tab-button {
|
305 |
+
font-size: 1em;
|
306 |
+
padding: 10px 20px;
|
307 |
+
border: none;
|
308 |
+
background: #6a1b9a;
|
309 |
+
color: white;
|
310 |
+
cursor: pointer;
|
311 |
+
margin-right: 10px;
|
312 |
+
}
|
313 |
+
.tab-button.active {
|
314 |
+
background: #64b5f6;
|
315 |
+
}
|
316 |
+
.tab-content {
|
317 |
+
display: none;
|
318 |
+
padding: 20px;
|
319 |
+
background: #ffffff;
|
320 |
+
border-radius: 10px;
|
321 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
|
322 |
}
|
323 |
+
.tab-content.active {
|
324 |
+
display: block;
|
325 |
+
}
|
326 |
+
#leaderboard {
|
327 |
+
max-width: 100%;
|
328 |
+
margin: 20px auto;
|
329 |
+
border-radius: 10px;
|
330 |
+
overflow: hidden;
|
331 |
+
border: 1px solid #e5eff2;
|
332 |
+
background: #f9f9f9;
|
333 |
+
}
|
334 |
+
footer {
|
335 |
+
text-align: center;
|
336 |
+
padding: 20px;
|
337 |
+
background: #8e44ad;
|
338 |
+
color: #ffffff;
|
339 |
+
border-top: 5px solid #64b5f6;
|
340 |
+
margin-top: 20px;
|
341 |
}
|
342 |
"""
|
343 |
|
|
|
348 |
<h1>π Mobile-MMLU Benchmark Competition</h1>
|
349 |
<h2>π Welcome to the Competition</h2>
|
350 |
<p>
|
351 |
+
Welcome to the Mobile-MMLU Benchmark Competition. Submit your predictions,
|
352 |
view the leaderboard, and track your performance!
|
353 |
</p>
|
354 |
<hr>
|
355 |
</div>
|
356 |
""")
|
357 |
|
|
|
358 |
with gr.Tabs(elem_id="tabs"):
|
359 |
with gr.TabItem("π Overview"):
|
360 |
gr.Markdown("""
|
361 |
+
<div class="tab-content active">
|
362 |
+
<h2>About the Competition</h2>
|
363 |
+
<p>
|
364 |
+
**Mobile-MMLU** evaluates mobile-optimized LLMs on 16,186 scenario-based and factual questions across 80 fields.
|
365 |
+
<br><br> Test your model, submit predictions, and climb the leaderboard!
|
366 |
+
</p>
|
367 |
+
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
""")
|
369 |
|
370 |
with gr.TabItem("π€ Submission"):
|
|
|
381 |
|
382 |
def handle_evaluation(file, model_name, add_to_leaderboard):
|
383 |
status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
|
384 |
+
overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"] if not leaderboard.empty else 0
|
|
|
|
|
|
|
385 |
return status, overall_accuracy
|
386 |
|
387 |
eval_button.click(
|
|
|
404 |
outputs=[leaderboard_table],
|
405 |
)
|
406 |
|
407 |
+
gr.Markdown("<footer>Mobile-MMLU Competition | Last Updated: December 2024</footer>")
|
408 |
|
409 |
+
demo.launch()
|