SondosMB commited on
Commit
7e020a6
Β·
verified Β·
1 Parent(s): 927f408

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -10
app.py CHANGED
@@ -144,7 +144,6 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
144
 
145
  initialize_leaderboard_file()
146
 
147
-
148
  # Function to set default mode
149
  css_tech_theme = """
150
  body {
@@ -186,6 +185,19 @@ button:hover {
186
  box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
187
  }
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  .dataframe {
190
  color: #333333;
191
  background-color: #ffffff;
@@ -202,17 +214,17 @@ with gr.Blocks(css=css_tech_theme) as demo:
202
  gr.Markdown("""
203
  # πŸ† Mobile-MMLU Benchmark Competition
204
  ### 🌟 Welcome to the Competition Overview
205
- ![Competition Logo](mobile_mmlu_sd.jpeg)
206
  ---
207
- Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions, view the leaderboard, and track your performance.
208
  ---
209
  """)
210
 
211
- with gr.Tabs():
212
- with gr.TabItem("πŸ“– Overview"):
213
  gr.Markdown("""
214
  ## Overview
215
- Welcome to the Mobile-MMLU Benchmark Competition! Evaluate mobile-compatible Large Language Models (LLMs) on **16,186 scenario-based and factual questions** across **80 fields**.
216
  ---
217
  ### What is Mobile-MMLU?
218
  Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
@@ -245,7 +257,7 @@ For support, email: [Insert Email Address]
245
  ---
246
  """)
247
 
248
- with gr.TabItem("πŸ“€ Submission"):
249
  with gr.Row():
250
  file_input = gr.File(label="πŸ“‚ Upload Prediction CSV", file_types=[".csv"], interactive=True)
251
  model_name_input = gr.Textbox(label="πŸ–‹οΈ Model Name", placeholder="Enter your model name")
@@ -263,7 +275,7 @@ For support, email: [Insert Email Address]
263
  outputs=[eval_status, overall_accuracy_display],
264
  )
265
 
266
- with gr.TabItem("πŸ… Leaderboard"):
267
  leaderboard_table = gr.Dataframe(
268
  value=load_leaderboard(),
269
  label="Leaderboard",
@@ -280,5 +292,3 @@ For support, email: [Insert Email Address]
280
  gr.Markdown(f"**Last updated:** {LAST_UPDATED}")
281
 
282
  demo.launch()
283
-
284
-
 
144
 
145
  initialize_leaderboard_file()
146
 
 
147
  # Function to set default mode
148
  css_tech_theme = """
149
  body {
 
185
  box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
186
  }
187
 
188
+ .tabs {
189
+ margin-bottom: 15px;
190
+ gap: 10px;
191
+ }
192
+
193
+ .tab-item {
194
+ background-color: #ece2f4;
195
+ border-radius: 6px;
196
+ padding: 10px;
197
+ box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
198
+ margin: 5px;
199
+ }
200
+
201
  .dataframe {
202
  color: #333333;
203
  background-color: #ffffff;
 
214
  gr.Markdown("""
215
  # πŸ† Mobile-MMLU Benchmark Competition
216
  ### 🌟 Welcome to the Competition Overview
217
+ ![Competition Logo](https://via.placeholder.com/150)
218
  ---
219
+ Welcome to the **Mobile-MMLU Benchmark Competition**. Here you can submit your predictions, view the leaderboard, and track your performance.
220
  ---
221
  """)
222
 
223
+ with gr.Tabs(elem_id="tabs"):
224
+ with gr.TabItem("πŸ“– Overview", elem_classes=["tab-item"]):
225
  gr.Markdown("""
226
  ## Overview
227
+ Welcome to the **Mobile-MMLU Benchmark Competition**! Evaluate mobile-compatible Large Language Models (LLMs) on **16,186 scenario-based and factual questions** across **80 fields**.
228
  ---
229
  ### What is Mobile-MMLU?
230
  Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
 
257
  ---
258
  """)
259
 
260
+ with gr.TabItem("πŸ“€ Submission", elem_classes=["tab-item"]):
261
  with gr.Row():
262
  file_input = gr.File(label="πŸ“‚ Upload Prediction CSV", file_types=[".csv"], interactive=True)
263
  model_name_input = gr.Textbox(label="πŸ–‹οΈ Model Name", placeholder="Enter your model name")
 
275
  outputs=[eval_status, overall_accuracy_display],
276
  )
277
 
278
+ with gr.TabItem("πŸ… Leaderboard", elem_classes=["tab-item"]):
279
  leaderboard_table = gr.Dataframe(
280
  value=load_leaderboard(),
281
  label="Leaderboard",
 
292
  gr.Markdown(f"**Last updated:** {LAST_UPDATED}")
293
 
294
  demo.launch()