Update app.py
Browse files
app.py
CHANGED
@@ -1,168 +1,3 @@
|
|
1 |
-
|
2 |
-
# # demo.launch()
|
3 |
-
# import gradio as gr
|
4 |
-
# import pandas as pd
|
5 |
-
# import os
|
6 |
-
# import re
|
7 |
-
# from datetime import datetime
|
8 |
-
|
9 |
-
# LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
10 |
-
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
11 |
-
|
12 |
-
# def initialize_leaderboard_file():
|
13 |
-
# """
|
14 |
-
# Ensure the leaderboard file exists and has the correct headers.
|
15 |
-
# """
|
16 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
17 |
-
# # Create the file with headers
|
18 |
-
# pd.DataFrame(columns=[
|
19 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
20 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
21 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
22 |
-
# else:
|
23 |
-
# # Check if the file is empty and write headers if needed
|
24 |
-
# if os.stat(LEADERBOARD_FILE).st_size == 0:
|
25 |
-
# pd.DataFrame(columns=[
|
26 |
-
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
27 |
-
# "Correct Predictions", "Total Questions", "Timestamp"
|
28 |
-
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
29 |
-
|
30 |
-
# def clean_answer(answer):
|
31 |
-
# """
|
32 |
-
# Clean and normalize the predicted answers.
|
33 |
-
# """
|
34 |
-
# if pd.isna(answer):
|
35 |
-
# return None
|
36 |
-
# answer = str(answer)
|
37 |
-
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
38 |
-
# if clean:
|
39 |
-
# return clean[0].upper()
|
40 |
-
# return None
|
41 |
-
|
42 |
-
# def update_leaderboard(results):
|
43 |
-
# """
|
44 |
-
# Append new submission results to the leaderboard file.
|
45 |
-
# """
|
46 |
-
# new_entry = {
|
47 |
-
# "Model Name": results['model_name'],
|
48 |
-
# "Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
49 |
-
# "Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
|
50 |
-
# "Correct Predictions": results['correct_predictions'],
|
51 |
-
# "Total Questions": results['total_questions'],
|
52 |
-
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
53 |
-
# }
|
54 |
-
|
55 |
-
# new_entry_df = pd.DataFrame([new_entry])
|
56 |
-
# new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
57 |
-
|
58 |
-
# def load_leaderboard():
|
59 |
-
# """
|
60 |
-
# Load all submissions from the leaderboard file.
|
61 |
-
# """
|
62 |
-
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
63 |
-
# return pd.DataFrame({
|
64 |
-
# "Model Name": [],
|
65 |
-
# "Overall Accuracy": [],
|
66 |
-
# "Valid Accuracy": [],
|
67 |
-
# "Correct Predictions": [],
|
68 |
-
# "Total Questions": [],
|
69 |
-
# "Timestamp": [],
|
70 |
-
# })
|
71 |
-
# return pd.read_csv(LEADERBOARD_FILE)
|
72 |
-
|
73 |
-
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
74 |
-
# """
|
75 |
-
# Evaluate predictions and optionally add results to the leaderboard.
|
76 |
-
# """
|
77 |
-
# ground_truth_file = "ground_truth.csv"
|
78 |
-
# if not os.path.exists(ground_truth_file):
|
79 |
-
# return "Ground truth file not found.", load_leaderboard()
|
80 |
-
# if not prediction_file:
|
81 |
-
# return "Prediction file not uploaded.", load_leaderboard()
|
82 |
-
|
83 |
-
# try:
|
84 |
-
# # Load predictions and ground truth
|
85 |
-
# predictions_df = pd.read_csv(prediction_file.name)
|
86 |
-
# ground_truth_df = pd.read_csv(ground_truth_file)
|
87 |
-
|
88 |
-
# # Merge predictions with ground truth
|
89 |
-
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
90 |
-
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
91 |
-
|
92 |
-
# # Evaluate predictions
|
93 |
-
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
94 |
-
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
95 |
-
# total_predictions = len(merged_df)
|
96 |
-
# total_valid_predictions = len(valid_predictions)
|
97 |
-
|
98 |
-
# # Calculate accuracy
|
99 |
-
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
100 |
-
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
101 |
-
|
102 |
-
# results = {
|
103 |
-
# 'model_name': model_name if model_name else "Unknown Model",
|
104 |
-
# 'overall_accuracy': overall_accuracy,
|
105 |
-
# 'valid_accuracy': valid_accuracy,
|
106 |
-
# 'correct_predictions': correct_predictions,
|
107 |
-
# 'total_questions': total_predictions,
|
108 |
-
# }
|
109 |
-
|
110 |
-
# # Update leaderboard only if opted in
|
111 |
-
# if add_to_leaderboard:
|
112 |
-
# update_leaderboard(results)
|
113 |
-
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
114 |
-
# else:
|
115 |
-
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
116 |
-
# except Exception as e:
|
117 |
-
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
118 |
-
|
119 |
-
# # Initialize leaderboard file
|
120 |
-
# initialize_leaderboard_file()
|
121 |
-
|
122 |
-
# # Gradio Interface
|
123 |
-
# with gr.Blocks() as demo:
|
124 |
-
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
125 |
-
|
126 |
-
# with gr.Tabs():
|
127 |
-
# # Submission Tab
|
128 |
-
# with gr.TabItem("π
Submission"):
|
129 |
-
# file_input = gr.File(label="Upload Prediction CSV")
|
130 |
-
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
|
131 |
-
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
|
132 |
-
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
133 |
-
# leaderboard_table_preview = gr.Dataframe(
|
134 |
-
# value=load_leaderboard(),
|
135 |
-
# label="Leaderboard (Preview)",
|
136 |
-
# interactive=False,
|
137 |
-
# wrap=True,
|
138 |
-
# )
|
139 |
-
# eval_button = gr.Button("Evaluate and Update Leaderboard")
|
140 |
-
# eval_button.click(
|
141 |
-
# evaluate_predictions,
|
142 |
-
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
|
143 |
-
# outputs=[eval_status, leaderboard_table_preview],
|
144 |
-
# )
|
145 |
-
|
146 |
-
# # Leaderboard Tab
|
147 |
-
# with gr.TabItem("π
Leaderboard"):
|
148 |
-
# leaderboard_table = gr.Dataframe(
|
149 |
-
# value=load_leaderboard(),
|
150 |
-
# label="Leaderboard",
|
151 |
-
# interactive=False,
|
152 |
-
# wrap=True,
|
153 |
-
# )
|
154 |
-
# refresh_button = gr.Button("Refresh Leaderboard")
|
155 |
-
# refresh_button.click(
|
156 |
-
# lambda: load_leaderboard(),
|
157 |
-
# inputs=[],
|
158 |
-
# outputs=[leaderboard_table],
|
159 |
-
# )
|
160 |
-
|
161 |
-
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
162 |
-
|
163 |
-
# demo.launch()
|
164 |
-
|
165 |
-
|
166 |
import gradio as gr
|
167 |
import pandas as pd
|
168 |
import os
|
@@ -309,70 +144,77 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
309 |
|
310 |
initialize_leaderboard_file()
|
311 |
|
312 |
-
import gradio as gr
|
313 |
-
|
314 |
# Function to set default mode
|
315 |
css_tech_theme = """
|
316 |
body {
|
317 |
-
background-color: #
|
318 |
-
color: #
|
319 |
-
font-family:
|
|
|
320 |
}
|
321 |
|
322 |
a {
|
323 |
-
color: #
|
|
|
324 |
}
|
325 |
|
326 |
a:hover {
|
327 |
-
color: #
|
328 |
text-decoration: underline;
|
329 |
}
|
330 |
|
331 |
button {
|
332 |
-
background-color: #
|
333 |
color: #ffffff;
|
334 |
-
border
|
335 |
-
|
|
|
|
|
|
|
|
|
336 |
}
|
337 |
|
338 |
button:hover {
|
339 |
-
background-color: #
|
340 |
}
|
341 |
|
342 |
.input-row, .tab-content {
|
343 |
-
background-color: #
|
344 |
border-radius: 8px;
|
345 |
-
padding:
|
|
|
346 |
}
|
347 |
|
348 |
.dataframe {
|
349 |
-
color: #
|
350 |
-
background-color: #
|
351 |
-
border: 1px solid #
|
|
|
|
|
|
|
352 |
}
|
353 |
"""
|
354 |
|
355 |
-
|
356 |
with gr.Blocks(css=css_tech_theme) as demo:
|
357 |
gr.Markdown("""
|
358 |
-
# π
|
359 |
-
### π
|
360 |

|
361 |
---
|
362 |
-
Welcome to the **Mobile-MMLU Benchmark Competition**. Here you can submit your predictions, view the leaderboard, and track your performance
|
363 |
---
|
364 |
""")
|
365 |
|
366 |
with gr.Tabs():
|
367 |
with gr.TabItem("π Overview"):
|
368 |
gr.Markdown("""
|
369 |
-
##
|
370 |
Welcome to the **Mobile-MMLU Benchmark Competition**! Evaluate mobile-compatible Large Language Models (LLMs) on **16,186 scenario-based and factual questions** across **80 fields**.
|
371 |
---
|
372 |
-
###
|
373 |
Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
|
374 |
|
375 |
-
###
|
376 |
1. **Download the Dataset**
|
377 |
Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
|
378 |
2. **Generate Predictions**
|
@@ -385,17 +227,17 @@ Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized f
|
|
385 |
View real-time rankings on the leaderboard.
|
386 |
|
387 |
---
|
388 |
-
###
|
389 |
Participants must:
|
390 |
- Optimize their models for **accuracy**.
|
391 |
- Answer diverse field questions effectively.
|
392 |
---
|
393 |
-
###
|
394 |
1. Prepare your model using resources on our [GitHub page](https://github.com/your-github-repo).
|
395 |
2. Submit predictions in the required format.
|
396 |
3. Track your progress on the leaderboard.
|
397 |
|
398 |
-
###
|
399 |
For support, email: [Insert Email Address]
|
400 |
---
|
401 |
""")
|
@@ -421,18 +263,18 @@ For support, email: [Insert Email Address]
|
|
421 |
with gr.TabItem("π
Leaderboard"):
|
422 |
leaderboard_table = gr.Dataframe(
|
423 |
value=load_leaderboard(),
|
424 |
-
label="
|
425 |
interactive=False,
|
426 |
wrap=True,
|
427 |
)
|
428 |
-
refresh_button = gr.Button("
|
429 |
refresh_button.click(
|
430 |
lambda: load_leaderboard(),
|
431 |
inputs=[],
|
432 |
outputs=[leaderboard_table],
|
433 |
)
|
434 |
|
435 |
-
gr.Markdown(f"
|
436 |
|
437 |
demo.launch()
|
438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import os
|
|
|
144 |
|
145 |
initialize_leaderboard_file()
|
146 |
|
|
|
|
|
147 |
# Function to set default mode
|
148 |
css_tech_theme = """
|
149 |
body {
|
150 |
+
background-color: #ffffff;
|
151 |
+
color: #333333;
|
152 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
153 |
+
line-height: 1.6;
|
154 |
}
|
155 |
|
156 |
a {
|
157 |
+
color: #007acc;
|
158 |
+
font-weight: 500;
|
159 |
}
|
160 |
|
161 |
a:hover {
|
162 |
+
color: #005bb5;
|
163 |
text-decoration: underline;
|
164 |
}
|
165 |
|
166 |
button {
|
167 |
+
background-color: #007acc;
|
168 |
color: #ffffff;
|
169 |
+
border: none;
|
170 |
+
border-radius: 6px;
|
171 |
+
padding: 10px 15px;
|
172 |
+
font-size: 14px;
|
173 |
+
cursor: pointer;
|
174 |
+
transition: background-color 0.3s ease;
|
175 |
}
|
176 |
|
177 |
button:hover {
|
178 |
+
background-color: #005bb5;
|
179 |
}
|
180 |
|
181 |
.input-row, .tab-content {
|
182 |
+
background-color: #f9f9fc;
|
183 |
border-radius: 8px;
|
184 |
+
padding: 20px;
|
185 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
186 |
}
|
187 |
|
188 |
.dataframe {
|
189 |
+
color: #333333;
|
190 |
+
background-color: #ffffff;
|
191 |
+
border: 1px solid #d1d5db;
|
192 |
+
border-radius: 6px;
|
193 |
+
padding: 10px;
|
194 |
+
font-size: 14px;
|
195 |
}
|
196 |
"""
|
197 |
|
|
|
198 |
with gr.Blocks(css=css_tech_theme) as demo:
|
199 |
gr.Markdown("""
|
200 |
+
# π Mobile-MMLU Benchmark Competition
|
201 |
+
### π Welcome to the Competition Overview
|
202 |

|
203 |
---
|
204 |
+
Welcome to the **Mobile-MMLU Benchmark Competition**. Here you can submit your predictions, view the leaderboard, and track your performance.
|
205 |
---
|
206 |
""")
|
207 |
|
208 |
with gr.Tabs():
|
209 |
with gr.TabItem("π Overview"):
|
210 |
gr.Markdown("""
|
211 |
+
## Overview
|
212 |
Welcome to the **Mobile-MMLU Benchmark Competition**! Evaluate mobile-compatible Large Language Models (LLMs) on **16,186 scenario-based and factual questions** across **80 fields**.
|
213 |
---
|
214 |
+
### What is Mobile-MMLU?
|
215 |
Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
|
216 |
|
217 |
+
### How It Works
|
218 |
1. **Download the Dataset**
|
219 |
Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
|
220 |
2. **Generate Predictions**
|
|
|
227 |
View real-time rankings on the leaderboard.
|
228 |
|
229 |
---
|
230 |
+
### Competition Tasks
|
231 |
Participants must:
|
232 |
- Optimize their models for **accuracy**.
|
233 |
- Answer diverse field questions effectively.
|
234 |
---
|
235 |
+
### Get Started
|
236 |
1. Prepare your model using resources on our [GitHub page](https://github.com/your-github-repo).
|
237 |
2. Submit predictions in the required format.
|
238 |
3. Track your progress on the leaderboard.
|
239 |
|
240 |
+
### Contact Us
|
241 |
For support, email: [Insert Email Address]
|
242 |
---
|
243 |
""")
|
|
|
263 |
with gr.TabItem("π
Leaderboard"):
|
264 |
leaderboard_table = gr.Dataframe(
|
265 |
value=load_leaderboard(),
|
266 |
+
label="Leaderboard",
|
267 |
interactive=False,
|
268 |
wrap=True,
|
269 |
)
|
270 |
+
refresh_button = gr.Button("Refresh Leaderboard")
|
271 |
refresh_button.click(
|
272 |
lambda: load_leaderboard(),
|
273 |
inputs=[],
|
274 |
outputs=[leaderboard_table],
|
275 |
)
|
276 |
|
277 |
+
gr.Markdown(f"**Last updated:** {LAST_UPDATED}")
|
278 |
|
279 |
demo.launch()
|
280 |
|